Turán number for graphs with subgraphs of minimum degree \(> 2\)

For a finite family \( {\mathcal F}\) of graphs, let \( t(n, {\mathcal{F}})\) denote the smallest integer \( m\) that every graph on \( n\) vertices and \( m\) edges must contain a member of \( \mathcal{F}\) as a subgraph.

A problem on Turán numbers for graphs with degree constraints} (proposed by Erdös and Simonovits [1]. $250 for a proof and $100 for a counterexample)

Prove or disprove that \[ t(n,H) =O( n^{3/2}) \] if and only if \(H\) does not contain a subgraph each vertex of which has degree \(>2\).


Bibliography
1 P. Erdös, Some of my old and new combinatorial problems, Paths, flows, and VLSI-layout (Bonn, 1988), Algorithms Combin., 9, 35-45, Springer, Berlin, 1990.