Number of triangle-free graphs
Home
Search
Subjects
About Erdös
About This Site
Search
Subjects
- All (170)
- Ramsey Theory (40)
- Extremal Graph Theory (40)
- Coloring, Packing, and Covering (25)
- Random Graphs and Graph Enumeration (16)
- Hypergraphs (35)
- Infinite Graphs (14)
About Erdös
About This Site
Erdös, Kleitman and Rothschild \( ^{[2]}\) proved that almost all triangle-free graphs on \( n\) vertices are bipartite. A triangle-free graph \( G\) is said to be maximal if adding any edge to \( G\) will result in a triangle. A problem on maximal triangle-free graphs is the following:
Problem [1]
Determine or estimate the number of maximal triangle-free graphs on \(n\) vertices.
Bibliography | |
---|---|
1 | M. Simonovits, Paul Erdös' influence on extremal graph theory, The Mathematics of Paul Erdös, II (R. L. Graham and J. Nešetril, eds.), 148-192, Springer-Verlag, Berlin, 1996. |
2 |
P. Erdös, D. J. Kleitman and B. L. Rothschild,
Asymptotic enumeration of \( K_n\)-free graphs (Italian
summary), Colloquio Internazionale sulle Teorie Combinatorie
(Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17,
19-27, Accad. Naz. Lincei, Rome, 1976.
|