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Exercise 4.51. Suppose customer arrivals at a post office are modeled by a
Poisson process N with intensity A > 0. Let T; be the time of the first arrival.
Let t > 0. Suppose we learn that by time ¢ there has been precisely one arrival,
in other words, that Ny = 1. What is the distribution of T; under this new infor-
mation? In other words, find the conditional probability P(T; < s|N; = 1) for
all s > 0.
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Exercise 5.3. Let X ~ Unif[0, 1]. Find the moment generating function M(¢)
of X. Note that the calculation of M(¢) for t # O puts a t in the denominator,
hence the value M(0) has to be calculated separately.

Exercise 5.4. In parts (a)-(d) below, either use the information given to deter-
mine the distribution of the random variable, or show that the information
given is not sufficient by describing at least two different random variables
that satisfy the given condition.
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(6) Over the course of 365 days, 1 million radioactive atoms of Cesium-137 decayed to
977,287 radioactive atoms. Use the Poisson distribution to estimate the probability
that on a given day, 50 radioactive atoms decayed. Hint: how many atoms decay on
average every day?

(7) Telephone calls enter a college switchboard on the average of two every three minutes.
What is the probability of 5 or more calls arriving in a 9-minute period?
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