Discussion 2: $\mathrm{OH}: 8-10$ AM Mon zhw036@ucsd ed. HSS 5072

- Inclusion-exchsion formulas

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C) \\
&-P(A \cap C)+P(A \cap B \cap C)
\end{aligned}
$$

- conditional prob.

$$
\begin{aligned}
& P(C \mid D)=\frac{P(C \cap D)}{P(D)}=\frac{P(C D)}{P(D)}(P(D) \neq 0) \\
& P(C D)=P(C \mid D) \cdot P(D) \quad P(D \mid D)=1
\end{aligned}
$$

- independence between $A \& B$

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(A B)=P(A) P(B)
\end{aligned}
$$

events $A, B^{\star \phi} \subseteq \Omega$
$B^{\dagger} \subseteq \Omega$

$(A \subseteq B$

$$
\begin{aligned}
& P(A)=P(A B) \neq P(A) \cdot P(B) \\
& 0=P(A B) \neq P(A) \cdot P(B)
\end{aligned}
$$

if $A \leq B\} \Rightarrow A \& B$
$P(B) \neq 1$
$P(A) \neq 0$
(A) B

$$
\begin{aligned}
& \left.\begin{array}{l}
A \cap B=\varnothing \\
P(A)=0 \\
P(B) \neq 0
\end{array}\right] \Rightarrow A \& B \\
& \text { nnt indep. } \\
& P(\Omega)=\sum_{i=1}^{n} P\left(B_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bigcup_{i=1}^{n} B_{i}=\Omega, \quad B_{i} \cap B_{j}=\phi \Rightarrow\left\{B_{i}\right\}_{i=1}^{n} \text { parcition } \begin{aligned}
P(A) & =\sum_{i=1}^{n} P\left(A \cap B_{i}\right) \\
& =\sum_{i=1}^{n} P\left(A B_{i}\right)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \\
P\left(B_{k} \mid A\right) & =\frac{P\left(B_{k} A\right)}{P(A)}=\frac{P\left(A \mid B_{k}\right) \cdot P\left(B_{k}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)}
\end{aligned} \\
& \qquad \leqslant n \leqslant n
\end{aligned}
$$

$$
\begin{aligned}
B_{k} A & =B_{k} \cap A \\
& =A \cap B_{k}=A B_{k}
\end{aligned}
$$

Ex 1.40: I green ball, I red ball, 1 yellow ball, 1 white ball draw 4 balls with replacement GYR GUY
What is the probability that there exists at least one color that is repeated exactly twice?
(1) \# outcomes: $|\Omega|=4^{4}$
$G=\{$ green sql appears exactly twice $\}$

$$
\begin{array}{ll}
P(G)=\frac{\binom{4}{2} \cdot 3 \cdot 3}{4^{4}} & G G \square B \\
P(G \cap Y \cap R)=0 & P(G \cap Y \cap R \cap W)=0
\end{array}
$$

there exists at least one color appears exactly twice

$$
\begin{aligned}
P(G \cup Y \cup R \cup W) & =P(G)+P(Y)+P(R)+P(W) \\
& -P(G \cap Y)-P(G \cap R)-P(G \cap W) \\
& -P(Y \cap R)-P(Y \cap W)-P(R \cap W) \\
& =4 P(G)-6 P(G \cap Y) \\
P(G)= & \frac{\binom{4}{2} \cdot 3 \cdot 3}{4^{4}}=\frac{6 \times 9}{4^{4}}
\end{aligned}
$$

$$
P(G \cap Y)=\frac{\binom{4}{2}}{4^{4}}
$$

GEY
(2) at least one color appears twice

(3) Consider complement
P (there is no color appears exactly twice)
$=P($ each color appears exactly I time) GRYW
$+P$ (some color appears 3 times) GGGY
$+P(1$ color appears 4 times $] \quad G G G G$

$$
=\frac{4!}{4^{4}}+\frac{\binom{4}{1}\binom{4}{1} \cdot 3}{4^{4}}+\frac{4^{4}}{4^{4}}
$$

Ex2.10: 3 fair dice 4 -sided $\{1,2,3,(4\}$ 6 sided $\{1,2,3,(4) 5,6\}$ 12 -sided $\{1,2,3,(4), \cdots, 12\}$
We randomly pick one and then roll it to get a number

- What is probability that we get " 4 " given that we

$$
P\left(A \mid B_{1}\right) \text { get a } \begin{gathered}
\text {-sided die } \\
\text { at beginning }
\end{gathered}
$$

- If in the end, we get "4"
what is the probability I pulled out a 6 -sided

$$
P\left(B_{1} \mid A\right)
$$

die ?
$A=\{$ the outcome of the roll is 4$\}$
$B_{1}=\{$ we get a 6 -sided die at the begining\}

$$
\begin{gathered}
P\left(B_{1}\right)=P\left(B_{2}\right)=P\left(B_{3}\right)=\frac{1}{3} \\
P\left(A \mid B_{1}\right)=\frac{1}{6} \quad P\left(A \mid B_{2}\right)=\frac{1}{4} \\
P\left(A \mid B_{3}\right)=\frac{1}{12} \\
P\left(B_{1} \mid A\right)=\frac{P\left(A \mid B_{1}\right) P\left(B_{1}\right)}{\sum_{i=1}^{3} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}
\end{gathered}
$$

Monty Hall problem
$\frac{p}{2} \frac{e}{3}$ assume prize in door 1.

$$
P\left(\begin{array}{c}
\text { switching is good } \\
\text { i.e. you switch } \\
\text { and get prize }
\end{array}\right)=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
$$

$$
P(\text { switching is bad })=\frac{1}{3} p+\frac{1}{3}(1-p)=\frac{1}{3} \text {. }
$$

