

Exercise 1.7. We have an urn with 3 green and 4 yellow balls. We draw 3 balls one by one without replacement.
(a) Find the probability that the colors we see in order are green, yellow, green.
(b) Find the probability that our sample of 3 balls contains 2 green balls and 1 yellow ball.

$$
\begin{aligned}
& \text { (a) } \# \Omega=7 \times 6 \times 5 \\
& P(G Y G)=\frac{3 \times 4 \times 2}{7 \times 6 \times 5}
\end{aligned}
$$

(b)

- sampling without replacement but in order

$$
\# \Omega=7 \times 6 \times 5 \quad \frac{\binom{3}{2}\binom{4}{1} \times 3!}{7 \times 6 \times 5}
$$

- sampling without replacement and order 2 Green balls \& 1 yellows.

$$
\begin{aligned}
\# \Omega & =\binom{7}{3} \\
& =\frac{7 \times 6 \times 5}{3!}
\end{aligned}
$$

Exercise 1.12. We roll a fair die repeatedly until we see the number four appear and then we stop.
(a) What is the probability that we need at most 3 rolls?
(b) What is the probability that we needed an even number of die rolls?

S decompose your event "disjoint"

$$
\Omega \backslash A=A^{C} \quad P\left(A^{C}\right)=1-P(A)
$$

inclusion \& exclusion formula $P(A \cup B \cup C)$

$$
\begin{aligned}
& (A \cap B)^{C}=A^{C} \cup B^{C} \\
& (A \cup B)^{C}=A^{c} \cap B^{C}
\end{aligned}
$$

$$
\begin{aligned}
P(A \cap B \cap C)= & P(A \cup B \cup C)-P(A)-P(B)-P(C) \\
& P P(A \cap B)+P(A \cap C)+P(B \cap C)
\end{aligned}
$$

Fact 1.23. (Inclusion-exclusion formulas for two and three events)

$$
\begin{gather*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) . \tag{1.16}\\
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C) \\
-P(B \cap C)+P(A \cap B \cap C) .
\end{gather*}
$$

EX: You want to come up with a password with length 8. At each position, you randomly select one letter from A, B, C What is the probability each letter appears at least once in your password? = $1 \sim P(X \cup Y \cup Z)$
$\# \Omega=3^{8}$ complement: at lease one letter event not appearing in password.
$X=$ event A is not contained
XUYUZ
$Y=$ event B is not contained
$z=$ event C is not contained

$$
P(X \cup Y \cup Z)
$$

$$
\begin{aligned}
& P(X)=\frac{2^{8}}{3^{8}}=P(Y)=P(Z) \\
& \begin{aligned}
P(X \cap Y)=\frac{1}{3^{8}} & =P(X \cap Z) \\
& =P(Z \cap Y)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
P(X \cup Y \cup Z)= & P(X)+P(Y)+P(Z) \\
& -P(X \cap Y)-P(Y \cap Z)-P(X \cap Z) \\
& +P(X \cap Y \cap Z)
\end{aligned}
$$

$$
1-P(X \cup Y \cup Z)=1-\frac{3\left(2^{8}-1\right)}{3^{8}} \approx 0.8
$$

Exercise 1.9. We break a stick at a uniformly chosen random location. Find the probability that the shorter piece is less than $1 / 5$ th of the original.

$$
\Omega=\left(0, \frac{L}{2}\right]
$$

$$
P\left(\min \left\{L_{1}, L_{2}\right\}<\frac{L}{5}\right)=?
$$

$$
\frac{L}{5} \quad \frac{L}{5} \quad \frac{L}{S} \quad \frac{L}{5} \quad \frac{L}{5}
$$

