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My research interests lie in tensor decomposition, tensor approximation, ma-
chine learning, and data science. Tensors or multidimensional arrays are higher
order generalizations of matrices. They are natural structures for expressing data
that have inherent higher order structures. Tensor decompositions and Tensor ap-
proximations play an important role in learning those hidden structures. They
have many applications in machine learning, statistical learning, data science, sig-
nal processing, neuroscience, and more. The following is a summary of my research
projects during the Ph.D. program.

The project Higher Order Correlation Analysis for Multi-View Learning [1] pro-
poses a new method to solve the higher order tensor correlation maximization
problem. In the project Low Rank Tensor Decompositions and Approximations[2],
we study the relation between generating polynomials and tensors, then use gener-
ating polynomials to compute tensor decompositions and low rank approximations.
Generating Polynomials and Tensor CP Decompositions[3] project develops a novel
algorithm that detects tensor decompositions when the rank is higher. Our algo-
rithm is the first linear algebra based algorithm that can detect CP decomposition
when the tensor’s rank is greater than the largest dimension, to the best of the
author’s knowledge.

1. Higher Order Correlation Analysis For Multi-View Learning

To analyze multi-view or multidimensional data, multi-view learning methods are
frequently used in data science. The tensor canonical correlation analysis (TCCA)
method is one of the most important multi-view learning methods and it aims at
maximizing the higher order tensor correlation. The traditional TCCA method
often uses the alternating least square (ALS) method to maximize the higher order
tensor correlation. The ALS is convenient for implementation, but its performance
is generally not reliable. Therefore, we propose a new method for solving the higher
order tensor correlation maximization problem.

Let {(yi,1, . . . ,yi,m)}Ni=1 be a multi-view data set, with m views and N points.
We are looking for a r-dimensional latent space Rr such that each yi,j is projected
to zi,j ∈ Rr. The projection for the jth view can be represented by a matrix Pj .
Then the problem is equivalent to finding optimal projection matrices P1, . . . , Pm

that maximize

ρ :=

N∑
i=1

r∑
s=1

m∏
j=1

(PT
j yi,j)s.(1.1)

1



2 ZEQUN ZHENG

After some reformulation and relaxation, we may construct a tensor M from those
data and solve the following optimization, min

us,j ,λs

∥∥∥M−
∑r

s=1 λs · us,1 ⊗ · · · ⊗ us,m
∥∥∥2,

s.t. ∥us,j∥2 = 1, s = 1, . . . r, j = 1, . . . ,m.
(1.2)

After the vectors us,j are obtained by solving (1.2), the projection matrices Pj can
be chosen based on us,j .

Solving (1.2) is a low rank tensor approximation problem. We propose the
following method using generating polynomials to solve for the optimizer.

Algorithm 1.1. (A generating polynomial method for TCCA)
Input: a multi-view data set {(yi,1, . . . ,yi,m)}Ni=1 and an approximating rank r ≤

n1.
Step 1. Generate the tensor M ∈ Rn1×···nm using the data {(yi,1, . . . ,yi,m)}Ni=1.
Step 2. Solve linear least squares for coefficients of the generating polynomials for

M.
Step 3. Use the Schur Decomposition to find the roots of the generating polynomi-

als.
Step 4. Use those roots to compute a starting point for (1.2).
Step 5. Compute an improved solution us,j of

min
us,j∈Rnj

∥∥∥∥ r∑
s=1

us,1 ⊗ us,2 ⊗ ...⊗ us,m −M
∥∥∥∥2.

Step 6. Compute projection matrices Pj , . . . , Pm based on the improved solution
us,j .

Output: The matrices Pj , . . . , Pm.

We implemented Algorithm 1.1 and ran numerical experiments on two real-
world image data sets. We compared our method with Multiset CCA and TCCA
using ALS. The computational results show that our proposed method consistently
outperforms the prior existing methods.

In conclusion, we proposed a new method for solving the higher order tensor cor-
relation maximization problem. The generating polynomial method is introduced
to compute low rank approximating tensors with promising performance from the
higher order correlation tensor of multi-view input data. Consequently, the pro-
posed method can achieve better performance than earlier methods based on the
ALS.

2. Low Rank Tensor Decompositions And Approximations

Let m and n1, . . . , nm be positive integers. A tensor F of order m and dimension
n1 × · · · × nm can be labelled such that

F = (Fi1,...,im)1≤i1≤n1,...,1≤im≤nm
.

For every tensor F ∈ Cn1×···×nm , there exist vector tuples (vs,1, . . . , vs,m), s =
1, . . . , r, vs,j ∈ Cnj , such that

F =

r∑
s=1

vs,1 ⊗ · · · ⊗ vs,m.(2.1)
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The smallest such r is called the rank of F . When r is minimum, the equation
is called a rank-r tensor decomposition or CANDECOMP/PARAFAC (CP) tensor
decomposition. The low rank tensor approximation (LRTA) problem is to find a low
rank tensor that is close to a given one. This is equivalent to solving the following
nonlinear least squares optimization

min
vs,j∈Cnj , j=1,...,m

∥∥F −
r∑

s=1

vs,1 ⊗ · · · ⊗ vs,m
∥∥2.(2.2)

This work proposes a new method for low rank tensor decompositions and approx-
imations. In this paper, we extend the generating polynomial method to compute
tensor rank decompositions and low rank tensor approximations for nonsymmetric
tensors.

Without loss of generality, assume the dimensions are decreasing as n1 ≥ n2 ≥
· · · ≥ nm. For an order m tensor whose rank r ≤ n1, we show there is a bijection
relation between tensor decompositions and generating polynomials. Using this
property our algorithm can be applied to find tensor decompositions when the rank
is low. In this case, the following theorem guarantees our algorithm produces a
tensor decomposition for the tensor

Theorem 2.1. Suppose n1 ≥ n2 ≥ · · · ≥ nm and r ≤ min(n1,
n2···nm

n3
). For a

generic tensor F of rank-r, our algorithm produces a rank-r tensor decomposition
for F .

One advantage of our algorithm is that it only requires linear algebra computa-
tions. And our numerical experiment shows its speed is faster than the generalized
eigenvalue decomposition (GEVD) method which is a classical one for computing
tensor decomposition when the rank r ≤ n2.

When the rank n2···nm

n3
≤ r ≤ n1, finding CP decompositions is harder and we

need to apply optimization methods like nonlinear least square to find the generat-
ing polynomials.

Based on our algorithm for tensor decomposition, we also propose an algorithm
for computing low rank tensor approximations. The error analysis gives the follow-
ing theorem

Theorem 2.2. Let X gp be produced by our algorithm, Suppose the tensor F has
the best (or nearly best) rank-r approximation X bs. Under a generic condition, if
the distance ϵ = ∥F − X bs∥ is sufficiently small, then

∥X bs −X gp∥ = O(ϵ) and ∥F − X gp∥ = O(ϵ).

where the constants in the above O(·) only depend on F .

Theorem 2.2 concludes that if the tensor to be approximated is sufficiently close
to a low rank one, then the obtained low rank tensor is a quasi-optimal low rank
approximation. Numerical experiments demonstrate the outstanding performance
of our algorithm.

3. Generating Polynomials And Tensor CP Decompositions

As mentioned in section 2, detecting tensors’ CP decompositions is of great
importance and has many applications. For order 3 tensors, when the rank r > n2,
it is hard to find tensors’ decompositions. For algorithms that are linear algebra
based, only a few of them can detect the tensor decompositions when n1 ≥ r > n2.
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Those methods require the construction of larger matrices compared with tensors’
size. Therefore, the running time is not so satisfying for large tensors. And when
r > n1, none of them can detect the tensor decompositions.

In this work, we focus on order-3 tensors and study the tensor decomposition
problem especially when the rank r > n2. We propose a novel algorithm to find the
CP decompositions by utilizing generating polynomials. Our algorithm successfully
find tensors’ decompositions when (⌊n2

2 ⌋n3) ≥ r or (3n3−8)n2

2n3−5 ≥ r > n1 using linear
algebra computations only. When the order is greater than 3, we may apply the
flattening trick in [2] and apply our algorithm. We have the following result.

Theorem 3.1. Let F ∈ Cn1×n2×n3 be a rank-r tensor.
(1) If ⌊n2⌋n3

2 ≥ r > n2, then our algorithm can find the decomposition of F
generically.

(2) If (3n3−8)n2

2n3−5 ≥ r > n1, under the assumptions of a Proposition in [3], our
algorithm finds the decomposition F .

For the ⌊n2⌋n3

2 ≥ r case, we compare our algorithm with the nonlinear least
square method and the state of art algorithm that has the running time O(n6

1n
6
2n

6
3)

in this case. While our method has running time O(n1n
2
2n

5
3). The numerical

experiment also shows the running time difference. Both our algorithm and the
state of art algorithm find tensor decompositions successfully. The nonlinear least
square method failed to find the correct tensor decompositions.

For the (3n3−8)n2

2n3−5 ≥ r > n1 case, there is no linear algebra based method before,
to the best of the author’s knowledge. So we compare our algorithm with the non-
linear least square method. Our algorithm finds tensor decompositions successfully.
While the nonlinear least square method failed to find the correct tensor decompo-
sitions. Numerical examples successfully demonstrate the robustness and efficiency
of our algorithm.

4. Future Work

In the future, I will continue working on machine learning, statistical learning,
tensor computation, and applications of tensor computation. Here is a brief plan
for my future work.

• High-dimensional tensor-valued data are observed in many fields such as
personalized recommendation systems and imaging research. We are inter-
ested in studying the estimation and inference of conditional independence
structure within tensor data. Applying tensor computation methods to the
tensor graphical model and other high dimensional statistics problems is
part of my future research plan.

• Tensor computation has gained more and more interest because of its broad
applications especially in data science and machine learning. However,
there are still lots of unsolved problems in this relatively new research area.
In the future, I will continue to work on tensor computation problems, like
tensor decomposition, tensor approximation and so on.

• Tensors have broad applications in real-world and data science, includ-
ing tensor regression, Multi-view learning, tensor neural network, etc. For
example, applying CP decomposition to the convolutional kernel of a pre-
trained network can speed up deep neural networks. we are also interested
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in connecting the tensor decomposition methods with deep tensor canonical
analysis. Working on these applications is also part of my future research
plan.
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