Today: Periodic, aperiodic, reducible, irreducible Markov chains with finite state space
Prop. 7.1 Let \((X^n)\) be a MC with finite state space \(S\).

Suppose that there exists \(n_0 \in \mathbb{N}\) s.t. \([P^n]_{ij} > 0\) for all \(i, j \in S\).

Then for each \(j\), \(\pi(j)\) is equal to the asymptotic expected fraction of time the chain spends in state \(j\), i.e.,

\[
\lim_{n \to \infty} E \left[\frac{1}{n+1} \sum_{k=0}^{n} \mathbb{1}\{X_k = j\} \right] = \pi(j)
\]

Proof.

\[
E \left[\frac{1}{n+1} \sum_{k=0}^{n} \mathbb{1}\{X_k = j\} \right] = \frac{1}{n+1} \sum_{k=0}^{n} P[X_k = j] = \frac{1}{n+1} \sum_{k=0}^{n} \sum_{i \in S} P[X_k = j|X_0 = i] P[X_0 = i]
\]

By Cor. 6.6, \([\Pi_0 P^k]_j \to \pi(j), k \to \infty\), for all \(j \in S\) and \(\Pi_0\).

Therefore, \(\frac{1}{n+1} \sum_{k=0}^{n} [\Pi_0 P^k]_j \to \pi(j)\) [if \(a_n \to a, n \to \infty\), then \(\frac{1}{n} \sum_{k=1}^{n} a_k \to a\)]
Stationary distribution and expected return times

Recall that $T_{i,k}$ denotes the time of the k-th visit to state i.

$T_{i,k+1} = T_{i,k}$ are stopping times. Denote

$Y_k = 1$, $k = 1, 2, \ldots$

Then by the strong Markov property

$\{Y_k\}_{k=1}^\infty$ is a collection of i.i.d. random variables

$Y_k \sim$. Notice that $\sum_{k=1}^{m} Y_k = \sum_{k=1}^{m} T_{i,k+1} - T_{i,k} = \frac{1}{m} \sum_{k=1}^{m} T_{i,m+1} = \frac{1}{m} E[T_{i,m+1}]$. When $m \to \infty$, so $T_{i,m+1} \approx \frac{1}{m} E[T_{i}]$. Then

$\sum_{k=0}^{n} \mathbb{1}\{X_k = i\}$. Then $\frac{m+1}{n} \approx$
Periodic and aperiodic chains

Let \((X_n)\) be a MC with state space \(S\) and transition probability \(p(i,j)\).

Def. For \(i \in S\), denote \(J_i := \ldots\). We call \(d(i) := \ldots\)

\[
J_i = \begin{cases} \ldots & \text{if } d(i) = 1 \\
\ldots & \text{if } d(i) = \ldots
\end{cases}
\]

Def. If \(d(i) = 1\) for all \(i \in S\), then \((X_n)\) is called...
Periodic and aperiodic chains

Lemma 7.2 If P is the transition matrix for an irreducible Markov chain, then for all states i, j

Proof. Fix $i \in S$

(1) If $m, n \in J_i$, then

(2) Let $d = d(i)$. Then (definition of $d(i)$)

Take $j \neq i$.

(3) P irreducible $\Rightarrow \exists m, n$ s.t. $p_m(i, j) > 0$, $p_n(j, i) > 0$.

$\Rightarrow p_{m+n}(i, i) > 0 \Rightarrow (2)$

(4) If $e \in J_j$, then $p_e(j, j) > 0$ and thus

$\Rightarrow \Rightarrow \Rightarrow$

$\Rightarrow d$ is a common divisor of J_j \Rightarrow

(5) Swap i and j: $\exists q_2 \in \mathbb{N}$ s.t. $d(i) = q_2 d(j)$ (4) $\Rightarrow d(i) = d(j)$
Example 7.3 Let $G = (V, E)$ be a finite connected graph.

- SRW on G is irreducible (all vertices have the same period) — we call the common period the period of MC.
- For any $i \sim j$, $p(i, j) > 0$, $p(j, i) > 0$, so $p_2(i, i) > 0$, $2 \in \mathbb{Z}_i$
 \[d(i) \leq 2 \]
- Period is 2 iff:
 \[V = V_1 \cup V_2, \quad E \subseteq (V_1 \times V_2 \cup V_2 \times V_1) \]
 \[V = \mathbb{Z}, \quad V_1 = \text{even numbers} \]
 \[V_2 = \text{odd numbers} \]
Irreducible aperiodic Markov chains

Theorem 7.4 Let P be a transition matrix for a finite-state, irreducible, aperiodic Markov chain. Then there exists a unique stationary distribution π, $\pi = \pi P$, and for any initial probability distribution ν

$$\lim_{n \to \infty} \nu P^n = \pi$$

Proof. (1) By PF theorem, enough to show that there exists $n_0 > 0$ s.t. $\forall i,j$.

- Fix $i,j \in S$

(2) $d(i) = 1$ (aperiodic) $\Rightarrow \exists M_i$ s.t. J_i contains all $n \geq M_i$ $\Rightarrow p_n(i,i) > 0$

(3) irreducible $\Rightarrow \exists m_{ij}$ s.t. $p_{m_{ij}}(i,j) > 0$

(2)+(3):

$$\text{Take } n_0 = \max_{i,j} (M_i + m_{ij}) \Rightarrow$$
Reducible Markov chains

Not irreducible MC = reducible MC

Def 7.5 Let \((X_n)\) be a MC with state space \(S\). We say that states \(i\) and \(j\), denoted if there exists \(n,m \in \mathbb{N}_0\) s.t. and

\[
\begin{align*}
 i &\rightarrow j, \quad j \rightarrow k, \quad k \rightarrow i
\end{align*}
\]

Lemma 7.6 Relation \(\leftrightarrow\) on \(S\) is an equivalence relation.

(reflexivity, \(i \leftrightarrow i\)) \(p_0(i,i) = 1\), so \(i \leftrightarrow i\)

(symmetry, \(i \leftrightarrow j \Rightarrow j \leftrightarrow i\)) Follows from Def 7.5

(transitivity, \(i \leftrightarrow j, j \leftrightarrow k \Rightarrow i \leftrightarrow k\)) \(i \leftrightarrow j: p_n(i,j) > 0, p_m(j,i) > 0\)

\(j \leftrightarrow k: p_n'(j,k) > 0, p_m'(k,j) > 0\). Then

\[
\begin{align*}
 p &\in (0,1)
\end{align*}
\]
Communication classes

Equivalence relation \leftrightarrow splits the state space into communication classes (sets of states that communicate with each other).

MC is irreducible iff it consists of one communication class

Class properties: [proof as in Prop 4.8, Prop. 7.2]

- transience or recurrence: either all states in one class are transient (class) or all are recurrent (class)
- periodicity: all states in one class have the same period
Communication classes

Suppose \(i \) and \(j \) belong to different classes.

- If \(p(i\mid j) > 0 \), then for all \(n \in \mathbb{N} \) (otherwise \(i \leftrightarrow j \)).
- If \(p(i\mid j) > 0 \) and \(p_n(j\mid i) = 0 \) for all \(n \in \mathbb{N} \), then\(p_i(\{ X_n = i \text{ for infinitely many } n \} \leq 1 \), and thus \(i \) is transient.
- Therefore, if \(i \) and \(j \) belong to different classes and \(i \) is recurrent, then (once in a recurrent class, MC stays there forever)

If we split the state space into communication classes, with \(\mathcal{R}_c \) denoting recurrent classes, then the transition matrix has the following form.
General form of transition matrix with finite S

\[
P = \begin{bmatrix}
P_1 & 0 & 0 & \cdots & 0 \\
0 & P_2 & 0 & \cdots & 0 \\
0 & 0 & P_3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & P_r \\
S & Q & & & \\
\end{bmatrix}
\]

P_e submatrix for the recurrent class R_e

P_e is a stochastic matrix, we can consider it as a Markov chain on R_e

$[S|Q]$ transition probabilities starting from transient states.

- If P_e is aperiodic, then $P_e^n \rightarrow \left[\begin{array}{c} \pi^{(c)} \\ \vdots \\ \pi^{(u)} \end{array} \right]$, $n \rightarrow \infty$

- What about transient states?

- What if P_e is not aperiodic?
Transient states

Suppose there exists one transient class \(T \).

- If \(S = 0 \), then \(T \) is recurrent.
- If \(S \neq 0 \), then \(Q \) is substochastic, i.e., \(\exists i \in T \) s.t. \(\sum_{j \in T} Q_{ij} < 1 \).

If \(Q \) is substochastic, then for all eigenvalues \(\lambda \) of \(Q \) \(|\lambda| < 1 \Rightarrow Q^n \to 0, \; n \to \infty \), i.e., for \(i, j \in T \) \(\mathbb{P}(X_n = j) \to 0, \; n \to \infty \).

\[I + Q + Q^2 + \cdots = I + VDV^{-1} + VD^2V^{-1} + \cdots = V(I + D + D^2 + \cdots)V^{-1} \]

For \(i, j \in T \),
\[E_i \left[\sum_{n=0}^{\infty} 1_{X_n = j} \right] = \]
Transient states

Conclusion: if TCS is a transient class, then \(\forall i, j \in T \)

\[
\lim_{n \to \infty} P_i \left[X_n = j \right] = \]

\[
E \left[\sum_{k=0}^{n} \mathbb{1}_{\{X_n = j\}} \right] = \text{expected number of visits to } j \text{ starting from } i
\]

Example 8.1

\[
Q = \begin{bmatrix}
0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} & 0
\end{bmatrix}
\]

\[
(I - Q)^{-1} = \begin{bmatrix}
\frac{3}{2} & 1 & \frac{1}{2} & 0 & 0 \\
1 & \frac{1}{2} & 1 & \frac{1}{2} & 0 \\
\frac{1}{2} & 1 & \frac{3}{2} & 0 & 0 \\
1 & \frac{3}{2} & 1 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 1 & \frac{3}{2} & 0
\end{bmatrix}
\]

Expected number of visits to 2 starting from 0 is 1

Expected number of steps before absorption starting from 0 is \(\frac{3}{2} + 1 + \frac{1}{2} = 3 \)
Transient states

Recall, First step analysis for the mean hitting time

\[g_i = E_i [\tau_A] = \begin{cases} 0, & i \in A \\ 1 + \sum_{j \in S} p(i, j) g_j, & i \notin A \end{cases} \]

\[\tau_A = \sum_{n=0}^{\infty} 1_{\{X_n \notin A\}} \]

Instead of adding 1 for each step, add 1 only when \(X_n \) visits \(j \):

Denote \(S \setminus A =: T \), and for \(i, j \in T \)

Then \(\text{FSA} \)

\[g_{ij} = \begin{cases} \text{if } i \in A \\ \end{cases} \]

\[g_{ij} = \]

\[G = [g_{ij}] \]
Transient states

Starting from T_1, in which class will (X_n) end up?

Collapse each R_e into one state r_e, keep transient states t_e, $T = \{t_e\}$, (\tilde{X}_n) new MC on the reduced state space, and transition matrix \tilde{P}, with $\tilde{s}(t_i, r_j) = \lambda(t_i, r_j)$

Denote $\tilde{A} = [\lambda(t_i, r_j)]$ with

Then $\tilde{A} = \begin{bmatrix} \tilde{r}_1 & \tilde{r}_2 & \tilde{r}_3 & \cdots & \tilde{r}_n \end{bmatrix}$
Transient states

Example 8.2

What is the probability that starting from a transient state i we end up in a recurrent state j?

Use $\tilde{A} =$ (nothing to collapse in this case)

\[
\tilde{A} = \begin{bmatrix} \frac{3}{4} & 1 & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & 1 & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{4} & 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & 1 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{4} \end{bmatrix}
\]

Expected transit times from i to j (think about j as absorbing)