Today: Continuous time Markov chains

Homework 5 is due on Sunday, February 20, 11:59 PM
Continuous time Markov chains

Def Let \(S \) be a finite or countable state space. A stochastic process \((X_t)_{t \geq 0}\) with state space \(S \), indexed by non-negative reals \(t \) (in the interval \([0, \infty)\), or \([a, b]\)) is called a **continuous time Markov chain** if the following two properties hold:

1. **[Markov property]** Let \(0 \leq t_0 < t_1 < \ldots < t_n < \infty \) be a sequence of times, and let \(i_0, i_1, \ldots, i_n \in S \) be a sequence of states such that \(\mathbb{P}[X_{t_0} = i_0, X_{t_1} = i_1, \ldots, X_{t_{n-1}} = i_{n-1}] > 0 \). Then

\[
\mathbb{P}[X_{t_n} = i_n \mid X_{t_0} = i_0, \ldots, X_{t_{n-1}} = i_{n-1}] = \mathbb{P}[X_{t_n} = i_n \mid X_{t_{n-1}} = i_{n-1}]
\]

2. **[Right-continuity]** For \(t \geq 0 \) and \(i \in S \), if \(X_t = i \) then there is \(\varepsilon > 0 \) such that \(X_s = i \) for all \(s \in [t, t+\varepsilon] \)
Continuous time Markov chains

Moreover, we say that \((X_t)\) is time homogeneous if

(3) For any \(0 \leq s < t < \infty\) and states \(i, j \in S\)

\[
P(X_t = j \mid X_s = i) = P(X_{t-s} = j \mid X_0 = i)
\]

Recall that the evolution of a discrete time MC can be fully described by the one-step transition probabilities

\[
P(X_1 = j \mid X_0 = i) = p(i, j)
\]

For the continuous time Markov chains we need to know the transition probabilities for infinitely many times

\[
p_t(i, j) := P(X_t = j \mid X_0 = i), \ t > 0 \text{ (transition kernel)}
\]

(for any fixed \(i, j\), \(p_t(i, j)\) is a function of \(t\))
Typical trajectory
Jump times

Denote

\[J_1 := \min \{ t \geq 0 : X_t \neq X_0 \} \]

Right-continuity: if \(X_0 = i \) then there exists \(\epsilon > 0 \) s.t.

\[X_s = i \text{ for } s \in (0, \epsilon), \text{ therefore } P[J_1 > 0] = 1 \]

Suppose we have been waiting for a jump for time \(s \), i.e., \(J_1 > s \). How much longer are we going to wait?

What is the conditional probability of \(J_1 > s + t \) given \(J_1 > s \)?

Proposition 18.1 For \(s, t > 0 \) and \(i \in S \)

\[P[J_1 > s + t \mid J_1 > s] = P[J_1 > t] \]

Proof.
Jump times

Suppose \(X_0 = i \).

(1) Denote \(A_k = \{ X_{\frac{s_j}{2^k}} = i \text{ for all } j \in \{0, 1, \ldots, 2^k\} \} \)

Then \(P[J_1 > s] = P[\bigcap_{k=1}^{\infty} A_k] \)

- \(A_k \) and \(J \) are independent.

- If \(J_1 \leq s \), then \(\exists \ s' \in [0, s] \) s.t. \(X_{s'} \neq i \). Since \(X_t \) is right-continuous, there exists \(\varepsilon > 0 \) s.t. \(\forall u \in [s', s' + \varepsilon] \), \(X_u \neq i \). Then there exists \(k' \) and \(j' \) s.t. \(\frac{s_{j'}}{2^{k'}} \in [s', s' + \varepsilon] \), and thus \(A_{k'} \) does not hold. So \(\{ J_1 > s \}^C \subset \{ \bigcap_{k=1}^{\infty} A_k \}^C \)

(2) \(\forall k \in \mathbb{N} \quad A_k \subseteq A_{k+1} \)

For all \(j \in \{0, 1, \ldots, 2^k\} \), \(X_{\frac{s_j}{2^k}} = X_{\frac{s_{2j}}{2^{k+1}}} = i \) and \(2j \in \{0, 1, \ldots, 2^{k+1}\} \).
(3) By the continuity of the probability measure

\[P[J_i > s] = P[\bigcap_{k=1}^{\infty} A_k] = \lim_{k \to \infty} P[A_k] \]

(4) Denote

\[B_k = \{ X_{\frac{t_j}{2^k}} = i \text{ for all } j \in \{0, 1, \ldots, 2^k\} \} \]

\[C_k = \{ X_{\frac{s_j}{2^k}} = i \text{ for all } j \in \{0, 1, \ldots, 2^k\} \text{ and } X_{s + \frac{t_i'}{2^k}} = i \text{ for all } j' \in \{0, 1, \ldots, 2^k\} \} \]

Then

\[B_k \supset B_{k+1}, \quad C_k \supset C_{k+1}, \quad \text{and} \]

\[P[J_i > t] = P[\bigcap_{k=1}^{\infty} B_k] = \lim_{k \to \infty} P[B_k], \quad P[J_i > s+t] = P[\bigcap_{k=1}^{\infty} C_k] = \lim_{k \to \infty} P[C_k] \]
Jump times

\(P[A_k] = \left(P \left[X_{\frac{s}{2^k}} = i \mid X_0 = i \right]\right)^{2^k} \)

\[
P[A_k] = P \left[X_0 = i, X_{\frac{s}{2^k}} = i, \ldots, X_{\frac{s}{2^k} - i} = i \right] = \prod P \left[X_{\frac{s}{2^k}} = i \mid X_0 = i \right] \prod P[A_k] \]

\[
= \left(P \left[X_{\frac{s}{2^k}} = i \mid X_0 = i \right] \right)^{2^k}
\]

Similarly \(P[B_k] = \left(P \left[X_{\frac{s}{2^k}} = i \mid X_0 = i \right]\right)^{2^k} \) and

\[
P[C_k] = \left(P \left[X_{\frac{s}{2^k}} = i \mid X_0 = i \right]\right)^{2^k} \left(P \left[X_{\frac{s}{2^k}} = i \mid X_0 = i \right]\right)^{2^k}
\]

\(\forall k \quad P[C_k] = P[A_k] P[B_k] \Rightarrow \lim_{k \to \infty} P[C_k] = \lim_{k \to \infty} P[A_k] \lim_{k \to \infty} P[B_k] \)

Finally \(P[J_1 > s + t] = P[J_1 > s] P[J_1 > t] \)
Exponential distribution

\[P[J_i > s + t \mid J_i > s] = P[J_i > t] \]

is called the memoryless property. There is a unique one-parameter family of distributions on \((0, \infty)\) that possesses the memoryless property.

Prop. 18.2 If \(T \) is a random variable taking values in \((0, \infty)\) and if \(T \) has the memoryless property \(P[T > s + t \mid T > s] = P[T > t] \) for all \(s, t > 0 \), then \(T \) is an exponential random variable with some intensity \(q > 0 \): \(P[T > t] = e^{-qt}, t > 0, \quad (f_T(t) = q e^{-qt}) \)

Proof. Denote \(G(t) = P[T > t] \) and \(G(1) = e^{-q} \). Then \(G(t+s) = G(t)G(s) \)

- \(\exists n_0 \) s.t. \(G(1/n_0) > 0 \) \(\Rightarrow \) \(G(1) = (G(1/n_0))^{n_0} > 0 \) \(\Rightarrow \exists q > 0 \) s.t. \(G(1) = e^{-q} \)
- \(\forall n \in \mathbb{N} \) \(G(1/n) = e^{-q/n} \), \(\forall m \in \mathbb{Q}^+ \) \(G(m/n) = e^{-qm/n} \) \(G(t) = e^{-qt} \) for \(t \in \mathbb{Q}^+ \)
- \(G(t) \) is decreasing, so if \((t_n), (t'_n) \in \mathbb{Q}^+, t_n \uparrow t, t'_n \uparrow t \)

\[e^{-qt} = \lim_{n \to \infty} e^{-qt_n} \leq G(t) \leq \lim_{n \to \infty} e^{-qt'_n} = e^{-qt} \]
We write $T \sim \text{Exp}(q)$. Here are some properties of exponential distribution.

Prop 18.3 Let T_1, T_2, \ldots, T_n be independent with $T_j \sim \text{Exp}(q_j)$.

(a) Density $f_{T_j}(t) = q_j e^{-q_j t}$, $E[T_j] = \frac{1}{q_j}$, $\text{Var}[T_j] = \frac{1}{q_j^2}$

(b) $P(T_j > s + t | T_j > s) = P(T_j > t)$

(c) $T = \min_{j} T_j$ is exponential with $T \sim \text{Exp}(q_1 + \cdots + q_n)$. Moreover

$$P(T = T_j) = \frac{q_j}{q_1 + \cdots + q_n}$$