Today: Conditional probability. Independence
Next: ASV 3.1

Week 2:

- homework 2 (due Wednesday, October 12)
- survey on Canvas Quizzes (due Friday, October 7)
Law of total probability

Let B_1, B_2, \ldots, B_n be a partition of Ω
(i.e., B_i are disjoint, $B_1 \cup B_2 \cup \ldots \cup B_n = \Omega$, $P(B_i) > 0$).

Then for every event A:

$$P(A) = P(A \cap B_1 \cup A \cap B_2 \cup \ldots \cup A \cap B_n) = \sum_{i=1}^{n} P(A \cap B_i)$$

$$= \sum_{i=1}^{n} P(B_i)P(A \mid B_i)$$

Example 90% of coins are fair, 9% are biased to come up heads 60% of times, 1% are biased to come up heads 80%. You find a coin on the street.

How likely is it to come up heads?
Law of total probability

Define $A = \{\text{coin comes up heads}\}$, $B_1 = \{\text{coin is fair}\}$, $B_2 = \{\text{coin is 60\% biased}\}$, $B_3 = \{\text{coin is 80\% biased}\}$.

- B_1, B_2, B_3 form a partition and

 $P(B_1) = 0.9$, $P(B_2) = 0.09$, $P(B_3) = 0.01$

- $P(A|B_1) = 0.5$, $P(A|B_2) = 0.6$, $P(A|B_3) = 0.8$

Then using the law of total probability

$$P(A) = P(B_1) \cdot P(A|B_1) + P(B_2) \cdot P(A|B_2) + P(B_3) \cdot P(A|B_3)$$

$$= 0.9 \cdot 0.5 + 0.09 \cdot 0.6 + 0.01 \cdot 0.8 = 0.512$$

Another question: In the same setting, you find a coin and toss it. It comes up heads. How likely is it that this coin is 80\% biased (heavily biased)?
We know that \(P(A \mid B_3) = 0.8 \).

What can we say about \(P(B_3 \mid A) \)?

Generally speaking, \(P(A \mid B) \neq P(B \mid A) \).

Example According to Forbes, there are 2668 billionaires in the world, 2357 of them are men.

\[
P(M \mid B) = \frac{2357}{2668} \approx 88\% \neq P(B \mid M)
\]

Example Prosecutor's fallacy:

\(E = \{ \text{evidence on the defendant} \} \)
\(I = \{ \text{defendant is innocent} \} \)

Usually \(P(E \mid I) \) is small, but this does not imply that \(P(I \mid E) \) is small.
Bayes’ Rule (relation between \(P(A|B) \) and \(P(B|A) \))

\[
P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B) \cdot P(B)}{P(A)}
\]

This formula is often used with the law of total probability.

Let \(B_1, B_2, \ldots, B_n \) be a partition of the sample space. Then for any event \(A \) with \(P(A) > 0 \)

\[
P(B_k|A) = \frac{P(A \cap B_k)}{P(A)} = \frac{P(A|B_k) \cdot P(B_k)}{\sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)}
\]

Example. \(A = \{ \text{coin comes up heads} \} \), \(B_1 = \{ \text{coin is fair} \} \)

\(B_2 = \{ \text{coin is 60\% biased} \} \), \(B_3 = \{ \text{coin is 80\% biased} \} \)

Given: \(P(B_1) = 0.9 \), \(P(B_2) = 0.09 \), \(P(B_3) = 0.01 \), \(P(A|B_1) = 0.5 \), \(P(A|B_2) = 0.6 \), \(P(A|B_3) = 0.8 \)

We have computed that \(P(A) = \sum_{i=1}^{3} P(B_i)P(A|B_i) = 0.512 \)

Then \(P(B_3|A) = \frac{0.8 \cdot 0.01}{0.512} \approx 0.0156 \)
Bayes' rule

Example

Suppose that a certain test (e.g., virus X test) is 99% accurate (1% false positives, 1% false negatives). 0.25% of the population have this virus.

You test positive. What is the probability you have this virus?

(a) 99%

\(T = \{ \text{positive test} \} \)

\(P(T \cap V^c) = 0.01 = P(T^c \mid V) \)

(b) 20%

\(V = \{ \text{has virus} \} \)

\(P(V) = 0.0025 \)

(c) 1%

\(\Omega = V \cup V^c \)

(d) 0.25%

\(P(T \cap V) = 1 - P(T^c \mid V) = 0.99 \)

(e) not enough information

\[
P(V \mid T) = \frac{P(T \mid V) \cdot P(V)}{P(T)} = \frac{0.99 \cdot 0.0025}{0.99 \cdot 0.0025 + 0.01 \cdot 0.9975} \approx 0.1987 \approx 20%\]
What if

\(\Omega \)

\(V \)

\(V^c \)

Even though only 1\% of individuals in \(V^c \) get (false) positive test results, it is still 4 times more people than 99\% of individuals in \(V \) that test positive.

Posterior probabilities are highly sensitive to prior inputs!
The Monty Hall Problem

You play the following game. There are three doors. Each door hides a prize. Behind one door there is a car, behind two other doors - goats.

You choose one door. The host opens one of the doors you did not choose, revealing a goat. You are now given a possibility to either stick with your original choice, or switch to the other closed door.

Should you switch? (a) Yes (b) No (c) Doesn't matter