Today: Partial derivatives

Next: Strang 4.4

Week 6:

- homework 5 (due Friday, November 4, 11:59 PM)
Tangent planes

Recall, if f is a function of one real variable, then its graph determines a curve C in \mathbb{R}^2, and the tangent line to the graph of f at point x_0 is the line that "touches" the curve C at point $(x, f(x_0))$.

If f is a function of two variables, then its graph determines a surface S, and the tangent plane to S at $(x_0, y_0, f(x_0, y_0))$ is a plane that "touches" S at this point.
Tangent plane

Def. Let \(P_0 = (x_0, y_0, z_0) \) be a point on a surface \(S \), and let \(C \) be any curve passing through \(P_0 \) and lying entirely in \(S \). If the tangent lines to all such curves \(C \) at \(P_0 \) lie in the same plane, then this plane is called the

Def. Let \(S \) be a surface defined by a differentiable function \(z = f(x, y) \). Let \(P_0 = (x_0, y_0) \) be in the domain of \(f \). Then the equation of the tangent plane to \(S \) at \(P_0 \) is
Tangent plane

To see that this formula is correct, we can find two curves in S that pass through $(x_0, y_0, f(x_0, y_0))$ and determine the equations of the tangent lines.

Take $\vec{p}(t) =$ and $\vec{q}(s) =$

Then for any t (such that (t, y_0) is in the domain of f) $\vec{p}(t)$.

Similarly, for any s $\vec{q}(s)$.

Moreover,

Tangent line to $\vec{p}(t)$ at $t = x_0$: $\vec{e}_p(t) =$

with $\vec{p}'(t) =$

Similarly, tangent line to $\vec{q}(s)$ at $s = y_0$: $\vec{e}_q(s) =$

$\vec{q}'(s) =$
Tangent plane

Vectors $\vec{p}'(x_0) = \langle 1, 0, \frac{\partial f}{\partial x}(x_0, y_0) \rangle$ and $\vec{q}'(y_0) = \langle 0, 1, \frac{\partial f}{\partial y}(x_0, y_0) \rangle$ are not parallel, therefore, together with the point $(x_0, y_0, f(x_0, y_0))$ they determine a plane with normal vector \vec{n}.

The equation of a plane passing through $(x_0, y_0, f(x_0, y_0))$ with normal vector \vec{n} is
Tangent plane

Example Find the equation of the tangent plane to the surface defined by the function \(f(x,y) = e^{xy} \) at point \((1, -1)\)

- **Step 1:** Compute \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \)
 \[
 \frac{\partial f}{\partial x} = \quad \frac{\partial f}{\partial y} =
 \]

- **Step 2:** Evaluate \(\frac{\partial f}{\partial x} (x_0, y_0) \) and \(\frac{\partial f}{\partial y} (x_0, y_0) \)
 \[
 \frac{\partial f}{\partial x} (1, -1) = \quad \frac{\partial f}{\partial y} (1, -1) =
 \]

- **Step 3:** Evaluate \(f(x_0, y_0) \):
 \[
 f(1, -1) =
 \]

- **Step 4:** Plug everything into the equation:
Tangent plane does not always exist at every point

Example (tangent plane does not exist at (0,0))

Let \(f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2+y^2}} & , \quad (x,y) \neq 0 \\ 0 & , \quad (x,y) = 0 \end{cases} \) (\(f(x,y) \) is continuous)

\(S \) - surface defined by \(f(x,y) \)

Consider the curves:

Consider the curve \(\mathbf{p}(t) = \)

Then \(f(t,t) = \)

For a tangent plane to a surface to exist, it is sufficient that the function that defines the surface is differentiable.
Linear approximation

Functions of one variable:
the tangent line at \(x_0 \) can be used as the linear approximation of a function \(f(x) \) at points \(x \) close to \(x_0 \):

\[
f(x) \approx f(x_0) + f'(x_0)(x - x_0)
\]
for \(x \) close to \(x_0 \).

Functions of two variables: the tangent plane at \((x_0, y_0)\) can be used as the linear approximation of \(f(x, y) \) at points close to \((x_0, y_0)\).

Def. Given a function \(z = f(x, y) \) with continuous partial derivatives that exist at \((x_0, y_0)\), the linear approximation of \(f \) at point \((x_0, y_0)\) is given by

\[
y = f(x_0) + f'(x_0,y_0)(x - x_0) + R
\]
Linear approximation

Example

Given function \(f(x, y) = e^{xy} \) approximate \(f(1.01, 0.99) \) using points \((1, 1)\) as \((x_0, y_0)\).

- Compute the derivatives
 \[
 f_x(x, y) = , \quad f_y(x, y) =
 \]

- Evaluate \(f, f_x \) and \(f_y \) at \((x_0, y_0)\)
 \[
 f(1,1) = , \quad f_x(1,1) = , \quad f_y(1,1) =
 \]

- Write the linear approximation
 \[
 L(x, y) =
 \]

- Compute the approximation: \(L(1.01, 0.99) = \)
Differentiability

Functions of one variable: if a function is differentiable at x_0, the graph at x_0 is smooth (no corners), tangent line is well defined and approximates well the function around x_0.

Functions of two variables: differentiability gives the condition when the surface at (x_0, y_0) is smooth, by which we mean that the tangent plane at (x_0, y_0) exists. Notice, that whenever $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist, we can always write the equation

$$Z = f(x_0, y_0) + f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0). \quad (*)$$

But this does not mean that the tangent plane exists (if it exists, it is given by $(*)$).
Differentiability

Def. f is differentiable at (x_0, y_0) if $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist and the error term

$$E(x, y) = f(x, y) - [f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)]$$

satisfies

This means that

$$f(x, y) =$$

and $E(x, y)$ goes to zero faster than the distance between (x, y) and (x_0, y_0).

Remark: If $f(x, y)$ is differentiable at (x_0, y_0), then $f(x, y)$ is continuous at (x_0, y_0).
Differentiability

The existence of partial derivatives is not sufficient to have differentiability.

Example

\[f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases} \]

Then

\[f_x(x, y) = \begin{cases} -\frac{y^2}{(x^2 + y^2)^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}, \quad f_y(x, y) = \begin{cases} \frac{2xy}{(x^2 + y^2)^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases} \]

For \((x_0, y_0) = (0, 0) \), \(f(0, 0) = \), \(f_x(0, 0) = \), \(f_y(0, 0) = \), so

\[E(x, y) = \] and
Differentiability

But, if $f_x(x_0,y_0)$ and $f_y(x_0,y_0)$ exist AND are continuous in a neighborhood of (x_0,y_0), then f is differentiable at (x_0,y_0).

Theorem

If $f(x,y)$, $f_x(x,y)$, $f_y(x,y)$ all exist in a neighborhood of (x_0,y_0) and
The chain rule

Recall that for functions of one variable
\[
\frac{d}{dx} (f(g(x))) = f'(g(x)) \cdot g'(x)
\]

Thm (Chain rule for one independent variable)

Let \(x(t) \) and \(y(t) \) be differentiable functions, let \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) be a differentiable function. Then

\[
\frac{d}{dt} [f(x(t), y(t))] = \]

Example

Compute \(\frac{d}{dt} [f(\sin t, \cos t)] \) with \(f(x, y) = 4x^2 + 3y^2 \)

\[
\frac{\partial f}{\partial x} = \quad \frac{\partial f}{\partial y} = \quad \frac{d}{dt} \sin t = \quad \frac{d}{dt} \cos t = \]

\[
\frac{d}{dt} [f(\sin t, \cos t)] =
\]
The chain rule

Thm (Chain rule for two independent variables)
Suppose \(x(u,v) \) and \(y(u,v) \) are differentiable, and suppose \(f(x,y) \) is differentiable. Then
\[
z = f(x(u,v), y(u,v))
\]
is differentiable (function from \(\mathbb{R}^2 \) to \(\mathbb{R} \)) and
\[
\frac{\partial z}{\partial u} =
\]
\[
\frac{\partial z}{\partial v} =
\]

Example
\[
z = f(x,y) = e^{x^2+3y}, \quad x(u,v) = u + 2v, \quad y(u,v) = u - v
\]
\[
\frac{\partial f}{\partial x} = e^{x^2+3y}, \quad \frac{\partial f}{\partial y} = 3e^{x^2+3y}, \quad \frac{\partial x}{\partial u} = 1, \quad \frac{\partial x}{\partial v} = 2, \quad \frac{\partial y}{\partial u} = 1, \quad \frac{\partial y}{\partial v} = -1
\]
\[
\frac{\partial z}{\partial u} =
\]
\[
\frac{\partial z}{\partial v} =
\]