Name (last, first): \qquad

Student ID: \qquad

Write your name and PID on the top of EVERY PAGE.

\square Write the solutions to each problem on separate pages. CLEARLY
INDICATE on the top of each page the number of the corresponding
problem. Different parts of the same problem can be written on the
same page (for example, part (a) and part (b)).

The exam consists of 4 questions. Your answers must be carefully justified to receive credit.

This exam will be scanned. Make sure you write ALL SOLUTIONS on the paper provided. DO NOT REMOVE ANY OF THE PAGES.

No calculators, phones, or other electronic devices are allowed.

Remember this exam is graded by a human being. Write your solutions NEATLY AND COHERENTLY, or they risk not receiving full credit.

You are allowed to use one 8.5 by 11 inch sheet of paper with handwritten notes (on both sides); no other notes (or books) are allowed.

This exam is property of the regents of the university of California and not meant for outside distribution. If you see this exam appearing elsewhere, please NOTIFY the instructor at ynemish@ucsd.edu and the UCSD Office of Academic Integrity at aio@ucsd.edu.

1. (20 points) Let $f(x, y)=\left(x+y^{2}\right) e^{x^{2} y^{2}}$.
(a) Find the gradient of the function f at point $(0,0)$. Find the directional derivative of the function f at the point $(0,0)$ in the direction $\vec{v}=\langle 3,4\rangle$.
(b) Fin the unit vector in the direction of the maximal rate of increase for the function f at the point $(0,0)$. What is the value of the directional derivative in this direction?
2. (20 points) Use the chain rule to find the partial derivative $\frac{\partial z}{\partial v}$ for

$$
z=\left(x+\frac{y}{x}\right)^{2},
$$

where

$$
x=u+v, \quad y=u-v .
$$

You may leave your answer as a product of terms, but your answer should not have any derivative operations remaining to be performed. Your final answer should only be a function of u and v.
3. (20 points) Find the tangent plane to the function $f(x, y)=\sqrt{x y^{2}+\ln (x)+1}$ at the point $(1,0)$. [Hint. Recall that $\ln (1)=0$.]
4. (20 points) Suppose that $\mathbf{r}(t)=\left\langle e^{\cos (t)}, \sin \left(1-e^{-t}\right), t\right\rangle$. Find the unit tangent vector to this curve at time $t=0$.

