MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: Equations of a plane

Next: Strang 3.1

Week 3:

- homework 3 (due Monday, October 17)
- Midterm 1: Wednesday, October 19 (vectors, dot product, cross product, equations of lines and planes)

Planes
Two points determine a line: for any two points P, Q (in \mathbb{R}^{2} or \mathbb{R}^{3}) there exists a unique line passing through P and Q. A point X is in the line through P and Q if $\overrightarrow{P X}$ is a multiple of $\overrightarrow{P Q}$, i.e., $\overrightarrow{P X}=t \overrightarrow{P Q}$ for some $t \in \mathbb{R}$.

Three points (that do not all lie on the same line) determine a plane: for any three points P, Q and R in R^{3} that do not all lie on the same line, there exists a unique plane that passes through these three points. A point X is in the plane passing through P, Q and R if

Equation of a plane

Another way to describe a plane is by identifying

If P is a point in the plane and vector \vec{n} is orthogonal to the plane (called the normal vector) then point X is in this plane if and only if

Equation of a plane
Consider a plane containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=\langle a, b, c\rangle$. Then point $X=(x, y, z)$ belong to this plane if and only if
(*)

If we denote , then (*) becomes

Suppose that we know the coordinates of three points P, Q, R in the plane. How can we find a normal vector to this plane?

Example
Write the vector equation for the plane containing points $P=(1,1,0), Q=(-2,1,1), R=(0,0,1)$

Compute the normal vector to the plane

Point $X=(x, y, z)$ is in the plane if , or equivalently

Distance between a plane and a point
. X

Consider a plane with point P and normal vector \vec{n}. Suppose that point X does not belong to this plane. The distance d between X and the plane is the smallest distance between X and points in the plane If $\overrightarrow{R X}$ is orthogonal to the plane (parallel to \vec{n}), then

Distance between a plane and a point
Conclusion:

How to find $\overrightarrow{R X}$ (and $\|\overrightarrow{R X}\|$) if P and \vec{n} are given?

$$
\overrightarrow{R X}=
$$

Distance between a plane and a point
Example
Find the distance between the point $X=(0,0,0)$ and the plane given by $x+2 y+3 z-3=0$.

This is the equation in the general form. First find the normal vector
Next we need a point in the plane (any point), i.e., any numbers x_{0}, y_{0}, z_{0} such that $x_{0}+2 y_{0}+3 z_{0}-3=0$. We can take

Then the distance from X to the plane is

Vector-valued functions
Definition A vector-valued function is a function that takes real numbers as inputs and gives vectors as outputs, ie.,

$$
\begin{aligned}
& \vec{r}(t)= \\
& \vec{r}(t)=
\end{aligned}
$$

Example $\vec{r}(t)=$

$$
\vec{r}(t)=
$$

Remark From now on we will not distinguish between the point (x, y, z) and the vector $\langle x, y, z\rangle$, both are just lists of three real numbers

Vector-valued functions
Vector valued function $\vec{r}(t)$ often represents a

Think about the motion of a planet, flight of an airplane or a bird etc.

A vector-valued function may not be defined for all real numbers. For example, $\vec{r}(t)=$ is not defined for

You can explicitly specify the set of real number for which you want to define the function by writing, e.g.,

- We call this set the

Vector-valued functions
If the domain is not explicitly specified, we assume that it is the set of

Example

$$
\begin{aligned}
\vec{r}(t) & =\left\langle\frac{1}{t} \cdot \frac{1}{\cos t} \cdot t\right\rangle \\
\operatorname{dom}(\vec{r}(t)) & =
\end{aligned}
$$

Sometimes the domain is found from the problem setup. If the function describes the motion of a bird between time O and tim T, then the domain is

