MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: Equations of a plane

Next: Strang 3.1

Week 3:

- homework 3 (due Nionday, October 17)
- Midterm 1: Wednesday, October 19 (vectors, dot product, cross product, equations of lines and planes)

Planes
Two points determine a line: for any two points P, Q (in \mathbb{R}^{2} or \mathbb{R}^{3}) there exists a unique line passing through P and Q. A point X is in the line through P and Q if $\overrightarrow{P X}$ is a multiple of $\overrightarrow{P Q}$, i.e., $\overrightarrow{P X}=t \overrightarrow{P Q}$ for some $t \in \mathbb{R}$.

Three points (that do not all lie on the same line) determine a plane: for any three points P, Q and R in R^{3} that do not all lie on the same line, there exists a unique plane that passes through these three points.
A point X is in the plane passing through P, Q and R if $\overrightarrow{P X}$ is a linear combination of vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ $\overrightarrow{P X}=t \overrightarrow{P Q}+s \overrightarrow{P R} \quad$ for some $\quad t, s \in \mathbb{R}$

Equation of a plane

Another way to describe a plane is by identifying a point in the plane and a vector that is perpendicular (orthogonal) to the plane. If P is a point in the plane and vector \vec{n} is orthogonal to the plane (called the normal vector) then point X is in this plane if and only if $\vec{n} \perp \overrightarrow{P X}, \vec{n} \cdot \overrightarrow{P X}=0$ (vector equation of a plane)

Equation of a plane
Consider a plane containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=\langle a, b, c\rangle$. Then point $X=(x, y, z)$ belong to this plane if and only if
(*)

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

scalar equation of a plane

If we denote $d:=-a x_{0}-b y_{0}-c z_{0}$, then (*) becomes

$$
a x+b y+c z+d=0
$$

general form of the equation of a plane
Suppose that we know the coordinates of three points P, Q, R in the plane. How can we find a normal vector to this plane?

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}
$$

Example
Write the vector equation for the plane containing points $P=(1,1,0), Q=(-2,1,1), R=(0,0,1)$

$$
\overrightarrow{P Q}=\langle-3,0,1\rangle, \quad \overrightarrow{P R}=\langle-1,-1,1\rangle
$$

Compute the normal vector to the plane

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle-3,0,1\rangle \times\langle-1,-1,1\rangle=\langle 1,2,3\rangle
$$

Point $X=(x, y, z)$ is in the plane if
$\vec{n} \cdot \overrightarrow{P X}=0 \quad$ or equivalently vector equation equivalent $\left[\begin{array}{ll}\langle 1,2,3\rangle \cdot\langle x-1, y-1, z-0\rangle=0 & \text { of the plane } \\ -(x-1)+2(y-1)+3 \cdot z=0 & \text { scalar equation } \\ -x+2 y+3 z-3=0 & \text { general form }\end{array}\right.$

Distance between a plane and a point

$d=\|\overrightarrow{R X}\|$ such that $R X \perp$ to the plane $(\|\overrightarrow{R X}\|<\|\vec{Q} X\|$ for any Q in the plane)
Consider a plane with point P and normal vector \vec{n}. Suppose that point X does not belong to this plane. The distance d between X and the plane is the smallest distance between X and points in the plane If $\overrightarrow{R X}$ is orthogonal to the plane (parallel to \vec{n}), then $\overrightarrow{R X} \perp R \vec{Q}$ for any point $Q \neq R$ in the plane, $\|\vec{R} X\|<\|\overrightarrow{Q x}\|$

Distance between a plane and a point
Conclusion: $d=\|\overrightarrow{R X}\|$, where R is in the plane and $\overrightarrow{R X}$ is perpendicular to the plane ($\overrightarrow{R X}$ is parallel to \vec{n})
How to find $\overrightarrow{R X}$ (and $\|\overrightarrow{R X}\|$) if P and \vec{n} are given?

distance from point x to the plane with P and \hat{n}

$$
\overrightarrow{R X}=\operatorname{proj}_{\vec{n}} \overrightarrow{P X}=\frac{\overrightarrow{P X} \cdot \vec{n}}{\|\vec{n}\|^{2}} \vec{n},\|\overrightarrow{R X}\|=\frac{|\overrightarrow{P X} \cdot \vec{n}|}{\|\vec{n}\|^{2}} \cdot\|\vec{n}\|=\frac{|\overrightarrow{P X} \cdot \vec{n}|}{\|\vec{n}\|}=d
$$

Distance between a plane and a point
Example
Find the distance between the point $X=(0,0,0)$ and the plane given by $x+2 y+3 z-3=0$.
This is the equation in the general form. First find the normal vector $\vec{n}=\langle 1,2,3\rangle$
Next we need a point in the plane (any point), i.e., any numbers x_{0}, y_{0}, z_{0} such that $x_{0}+2 y_{0}+3 z_{0}-3=0$. We can take $x_{0}=0, y_{0}=0$, which requires that $z_{0}=1, P=(0,0,1)$ $\overrightarrow{P X}=\langle 0,0,-1\rangle \quad$ Then the distance from X to the plane is $\quad d=\frac{|\langle 1,2,3\rangle \cdot\langle 0,0,-1\rangle|}{\|\langle 1,2,3\rangle\|}=\frac{|-3|}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{3}{\sqrt{14}}$

Parallel and intersecting planes
Let P_{1} and P_{2} be two planes in \mathbb{R}^{3}. Then the following possibilities exist:

| | | P_{1} and P_{2} share a common point |
| :--- | :--- | :--- | :--- |
| YES | | NO |

