MATH 10C: Calculus III (Lecture B00)

mathwebucsd.edu/~ynemish/teaching/10c

Today: Equations of lines and planes
 Next: Strang 3.1

Week 3:

- homework 2 (due Monday, October 10)

Equation for a line in space

To describe a line in \mathbb{R}^{3} we must know either
(a) two points on the line
or (b) one point and direction.

The 2.11 (Parametric and symmetric egs. of a line)
A line parallel to vector $\vec{V}=\langle a, b, c\rangle$ and passing through $P=\left(x_{0}, y_{0}, z_{0}\right)$ can be described by the following parametric equations: $x=x_{0}+t a, y=y_{0}+t b, z=z_{0}+t_{c}, t \in \mathbb{R}$
If a, b and c are all nonzero, L can be described by the symmetric equation $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

Distance between a point and a line
Consider the line L through point P with direction vector \vec{v}. Suppose M is not on the line. What is the distance between L and M ?
 then

Distance between a point and a line
Example
Find the distance between $M=(3,2,1)$ and the line $\frac{x-5}{2}=\frac{y+2}{2}=-z$

Identify a point on the line:
Identify the direction vector of the line:
Compute
Finally,

Relationships between lines in \mathbb{R}^{3}
Let L_{1} and L_{2} be two lines in \mathbb{R}^{3}. Then the following four possibilities exist:

		L_{1} and L_{2} share a common point	
		YES	NO

Relationships between lines in \mathbb{R}^{3}
Example
L_{1} : direction vector $\vec{v}_{1}=\langle 1,2,0\rangle$, passing through $P_{1}=(0,0,1)$
L_{2} : direction vector $\vec{v}_{2}=\langle-3,-6,0\rangle$, passing through $P_{2}=(1,2,3)$
L_{3} : direction vector $\vec{v}_{3}=\langle 1,-1,1\rangle$, passing through $P_{3}=(-1,4,-1)$
(1) L_{1} and $L_{2} \vec{v}_{1}$ parallel to \vec{v}_{2}, \quad, therefore,
L_{1} and L_{2} are either
Write equations for L_{1} :

Relationships between lines in \mathbb{R}^{3}
Example
(2) L_{1} and L_{3}
(i) $\vec{v}_{1}=\langle 1,2,0\rangle, \vec{v}_{3}=\langle\mid,-1,1\rangle$. Are \vec{v}_{1} and \vec{v}_{3} parallel? Parallel if and only if

$$
\left\{\begin{array}{l}
\text { this system has no solutions, so } \\
\text { direction vectors are } \\
L_{1} \text { and } L_{3} \text { are }
\end{array}\right.
$$

(ii) Do L_{1} and L_{3} have a point in common? If $Q=(x, y, z)$ belongs to both L_{1} and L_{3}, then the coordinates of Q must satisfy both equations

Relationships between lines in \mathbb{R}^{3}

$$
\left\{\begin{array} { l }
{ x = t , } \\
{ y = 2 t , } \\
{ z = 1 , }
\end{array} \text { and } \left\{\begin{array}{l}
x=-1+s \\
y=4-5 \\
z=-1+5
\end{array} \text { for some sit } \in \mathbb{R}\right.\right.
$$

Equate the right-hand sides of the above equations

$$
\{
$$

If this system has a solution then L_{1} and L_{3} intersect

From the last equation we have. Substituting into the first two equations gives

Relationships between lines in \mathbb{R}^{3}
Example (3): L_{2} and L_{3}
L_{2} : direction vector $\vec{v}_{2}=\langle-3,-6,0\rangle$, passing through $P_{2}=(1,2,3)$ L_{3} : direction vector $\vec{v}_{3}=\langle 1,-1,1\rangle$, passing through $P_{3}=(-1,4,-1)$
Since \vec{v}_{2} and \vec{v}_{3} are not parallel, L_{2} and L_{3} are either intersecting or skew. We have to check if L_{2} and L_{3} have a point in common.

Planes
Two points determine a line: for any two points P, Q (in \mathbb{R}^{2} or \mathbb{R}^{3}) there exists a unique line passing through P and Q. A point X is in the line through P and Q if $\overrightarrow{P X}$ is a multiple of $\overrightarrow{P Q}$, i.e., $\overrightarrow{P X}=t \overrightarrow{P Q}$ for some $t \in \mathbb{R}$.

Three points (that do not all lie on the same line) determine a plane: for any three points P, Q and R in R^{3} that do not all lie on the same line, there exists a unique plane that passes through these three points. A point X is in the plane passing through P, Q and R if

Equation of a plane

Another way to describe a plane is by identifying

If P is a point in the plane and vector \vec{n} is orthogonal to the plane (called the normal vector) then point X is in this plane if and only if

Equation of a plane
Consider a plane containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=\langle a, b, c\rangle$. Then point $X=(x, y, z)$ belong to this plane if and only if
(*)

If we denote , then (*) becomes

Suppose that we know the coordinates of three points P, Q, R in the plane. How can we find a normal vector to this plane?

Example
Write the vector equation for the plane containing points $P=(1,1,0), Q=(-2,1,1), R=(0,0,1)$

Compute the normal vector to the plane

Point $X=(x, y, z)$ is in the plane if , or equivalently

