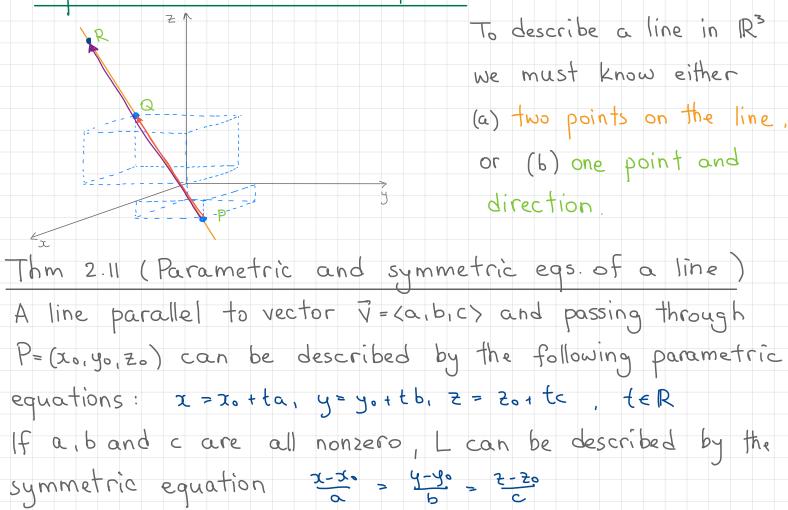
MATH 10C: Calculus III (Lecture B00)

mathweb.ucsd.edu/~ynemish/teaching/10c

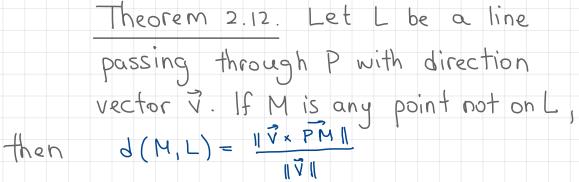

Today: Equations of lines and planes Next: Strang 3.1

Week 3:

homework 2 (due Monday, October 10)

· OH schedule updated

Equation for a line in space



Consider the line L through point P with direction vector V.

Suppose M is not on the line. What is the

distance between L and M?

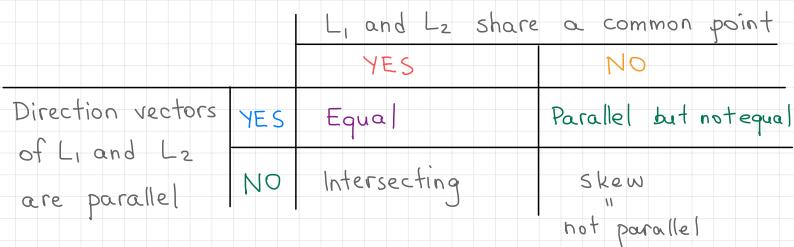
Distance between a point and a line

Example

Find the distance between M=(3,2,1) and the

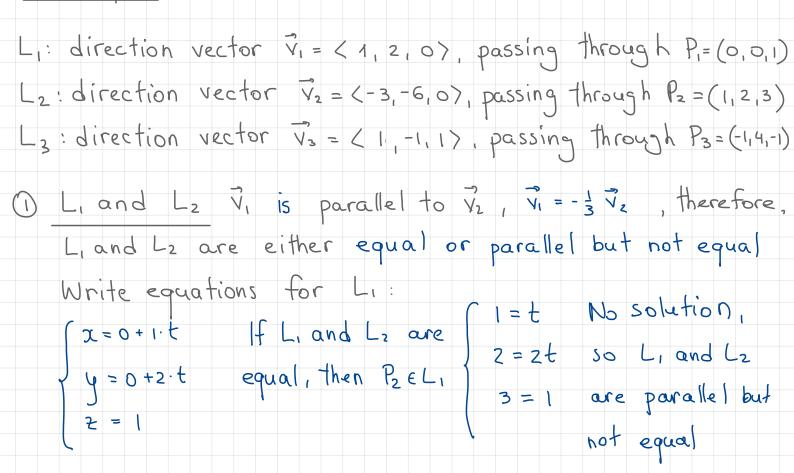
line $\frac{x-5}{2} = \frac{y+2}{2} = -\frac{z}{2}$ $\frac{x-5}{2} = \frac{y-(-z)}{2} = \frac{z-0}{-1}$

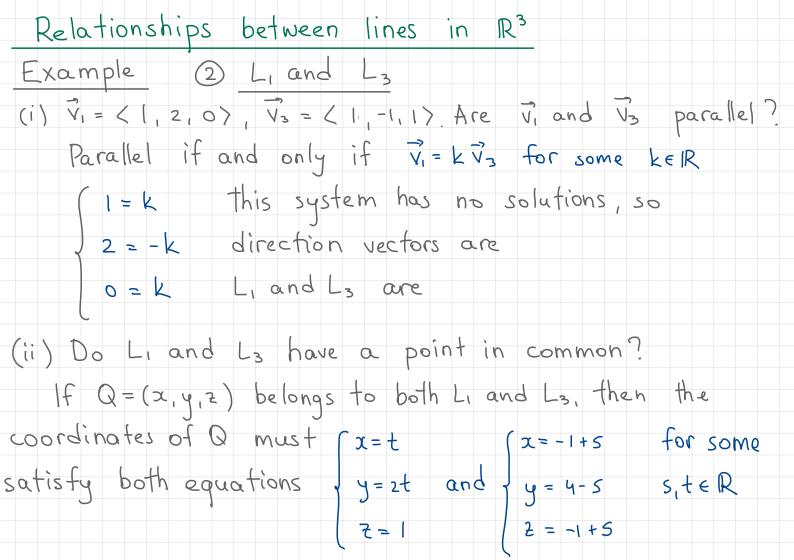
Identify a point on the line · P=(5,-2,0)


Identify the direction vector of the line: $\vec{v} = \langle z, z, -1 \rangle$

Compute $\vec{PM} = (-2, 4, 1), \vec{PM} \times \vec{v} = (-6, 0, -12)$

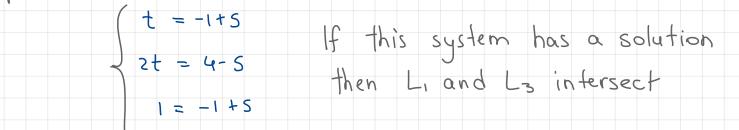
Finally, $\|\vec{v}\| = \sqrt{2^2 + 2^2 + 1^2} = 3$, $\|\vec{PM} \times \vec{v}\| = \sqrt{6^2 + 12^2} = \sqrt{36 + 144}$ = 180 $d(M, L) = \frac{180}{3} = 120 = 2\sqrt{5}$

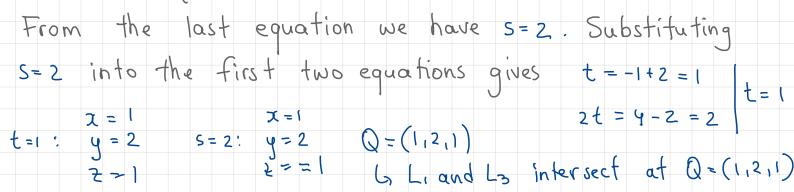

Relationships between lines in R³


Let Li and Lz be two lines in R3. Then the following four possibilities exist:

Relationships between lines in R³

Example





Relationships between lines in R³

$$x = t$$
,
 $y = zt$, and $y = 4 - 5$ for some s, t e R
 $z = 1$, $z = -1 + 5$

Equate the right-hand sides of the above equations

Relationships between lines in R³ Exercise

Example 3: Lz and Lz

L2: direction vector $\vec{v}_2 = \langle -3, -6, 0 \rangle$, passing through $P_2 = (1, 2, 3)$

L3: direction vector $\overline{V_3} = \langle 1, -1, 1 \rangle$, passing through $P_3 = (-1, 4, -1)$

Since V2 and V3 are not parallel, L2 and L3 are

either intersecting or skew. We have to check if

L2 and L3 have a point in common.

L2: 2 L3: 2 Equate: 2

Relationships between lines in R³ Solution Example 3: L2 and L3 L2: direction vector $\vec{v}_2 = \langle -3, -6, 0 \rangle$, passing through $P_2 = (1, 2, 3)$ L3: direction vector V3 = < 1, -1, 12, passing through P3=(-1,4,-1) Since V2 and V3 are not parallel, L2 and L3 are either intersecting or skew. We have to check if L2 and L3 have a point in common. (x = 1 - 3t) (x = -1 + s) (1 - 3t = -1 + s)L2: } y=2-6t L3: } y=4-5 Equate: 2-6t = 4-5 (Z=3) (Z=-1+5) (3=-1+5) $S=4 \rightarrow \begin{cases} 1-3t=-1+4 & (-3t=2) \\ 2-6t=4-4 & (-6t=-2) \\ t=\frac{1}{3} \\ L_2 \text{ and } \\ L_3 \text{ are} \\ SKEW! \end{cases}$