MATH 10C: Calculus III (Lecture B00)

mathwebucsod.edu/~ynemish/teaching/10c

Today: Equations of lines and planes
 Next: Strange 3.1

Week 3:

- homework 2 (due Monday, October 10)
- OH schedule updated

Equation for a line in space

To describe a line in \mathbb{R}^{3} we must know either
(a) two points on the line
or (b) one point and direction.

The 2.11 (Parametric and symmetric egs. of a line)
A line parallel to vector $\vec{V}=\langle a, b, c\rangle$ and passing through $P=\left(x_{0}, y_{0}, z_{0}\right)$ can be described by the following parametric equations: $x=x_{0}+t a, y=y_{0}+t b, z=z_{0}+t_{c}, t \in \mathbb{R}$
If a, b and c are all nonzero, L can be described by the symmetric equation $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

Distance between a point and a line
Consider the line L through point P with direction vector \vec{v}. Suppose M is not on the line. What is the distance between L and M ?

Area of the parallelogram spanned by $\overrightarrow{P M}$ and \vec{V}

$$
\|\overrightarrow{P M} \times \vec{V}\|=\|\vec{V}\| \cdot d(M, L)
$$

Theorem 2.12. Let L be a line passing through P with direction vector \vec{V}. If M is any point not on L, then $\quad d(M, L)=\frac{\|\vec{V} \times \overrightarrow{P M}\|}{\|\vec{v}\|}$

Distance between a point and a line
Example
Find the distance between $M=(3,2,1)$ and the line $\frac{x-5}{2}=\frac{y+2}{2}=-z \left\lvert\, \frac{x-5}{2}=\frac{y-(-2)}{2}=\frac{z-0}{-1}\right.$
Identify a point on the line: $P=(5,-2,0)$
identify the direction vector of the line: $\vec{v}=\langle 2,2,-1\rangle$
Compute $\quad \overrightarrow{P M}=\langle-2,4,1\rangle, \quad \overrightarrow{P M} \times \vec{V}=\langle-6,0,-12\rangle$
Finally, $\quad\|\vec{v}\|=\sqrt{2^{2}+2^{2}+1^{2}}=3, \quad\|\overrightarrow{P M} \times \vec{V}\|=\sqrt{6^{2}+12^{2}}=\sqrt{36+144}$

$$
d(M, L)=\frac{\sqrt{180}}{3}=\sqrt{20}=2 \sqrt{5}
$$

Relationships between lines in \mathbb{R}^{3}
Let L_{1} and L_{2} be two lines in \mathbb{R}^{3}. Then the following four possibilities exist:

		L_{1} and L_{2} share a common point	
		YES	NO
Direction vectors of L_{1} and L_{2}	YES	Equal	Parallel but not equal
are parallel	NO	Intersecting	skew not parallel not intersecting not int

Relationships between lines in \mathbb{R}^{3}
Example
L_{1} : direction vector $\vec{v}_{1}=\langle 1,2,0\rangle$, passing through $P_{1}=(0,0,1)$
L_{2} : direction vector $\vec{v}_{2}=\langle-3,-6,0\rangle$, passing through $P_{2}=(1,2,3)$
L_{3} : direction vector $\vec{v}_{3}=\langle 1,-1,1\rangle$, passing through $P_{3}=(-1,4,-1)$
(1) L_{1} and $L_{2} \vec{v}_{1}$ is parallel to $\vec{v}_{2}, \vec{v}_{1}=-\frac{1}{3} \vec{v}_{2}$, therefore, L_{1} and L_{2} are either equal or parallel but not equal Write equations for L_{1} :

$$
\begin{cases}x=0+1 \cdot t & \text { If } L_{1} \text { and } L_{2} \text { are } \\
y=0+2 \cdot t & \text { equal, then } P_{2} \in L_{1} \\
z=1 & \begin{array}{ll}
1=t & \text { No solution } \\
2=2 t & \text { so } L_{1} \text { and } L_{2} \\
3=1 & \text { are parallel but } \\
& \text { not equal }
\end{array}\end{cases}
$$

Relationships between lines in \mathbb{R}^{3}
Example
(2) L_{1} and L_{3}
(i) $\vec{v}_{1}=\langle 1,2,0\rangle, \vec{v}_{3}=\langle 1,-1,1\rangle$. Are \vec{v}_{1} and \vec{v}_{3} parallel? Parallel if and only if $\vec{v}_{1}=k \vec{v}_{3}$ for some $k \in \mathbb{R}$ $\begin{cases}1=k & \text { this system has no solutions, so } \\ 2=-k & \text { direction vectors are } \\ 0=k & L_{1} \text { and } L_{3} \text { are }\end{cases}$
(ii) Do L_{1} and L_{3} have a point in common?

If $Q=(x, y, z)$ belongs to both L_{1} and L_{3}, then the coordinates of Q must $\left\{\begin{array}{l}x=t \\ y=2 t \\ z=1\end{array}\right.$ and $\left\{\begin{array}{l}x=-1+5 \\ y=4-5 \\ z=-1+5\end{array}\right.$ for some

Relationships between lines in \mathbb{R}^{3}

$$
\left\{\begin{array} { l }
{ x = t , } \\
{ y = 2 t , } \\
{ z = 1 , }
\end{array} \text { and } \left\{\begin{array}{l}
x=-1+s \\
y=4-5 \\
z=-1+5
\end{array} \text { for some sit } \in \mathbb{R}\right.\right.
$$

Equate the right-hand sides of the above equations

$$
\left\{\begin{aligned}
t=-1+5 & \text { If this system has a solution } \\
2 t=4-5 & \text { then } L_{1} \text { and } L_{3} \text { intersect } \\
1=-1+5 &
\end{aligned}\right.
$$

From the last equation we have $s=2$. Substituting $s=2$ into the first two equations gives $t=-1+2=1$

$$
t=1: \begin{array}{lll}
x=1 \\
y=2 \\
z=1
\end{array} \quad s=2: \begin{aligned}
& x=1 \\
& y=2 \\
& z==1
\end{aligned} \quad Q=(1,2,1) \quad 2 t=4-2=2
$$

Relationships between lines in \mathbb{R}^{3} Exercise
Example (3): L_{2} and L_{3}
L_{2} : direction vector $\vec{v}_{2}=\langle-3,-6,0\rangle$, passing through $P_{2}=(1,2,3)$ L_{3} : direction vector $\vec{v}_{3}=\langle 1,-1,1\rangle$, passing through $P_{3}=(-1,4,-1)$
Since \vec{v}_{2} and \vec{v}_{3} are not parallel, L_{2} and L_{3} are either intersecting or skew. We have to check if L_{2} and L_{3} have a point in common.

Relationships between lines in \mathbb{R}^{3} Solution
Example (3): L_{2} and L_{3}
L_{2} : direction vector $\vec{v}_{2}=\langle-3,-6,0\rangle$, passing through $P_{2}=(1,2,3)$ L_{3} : direction vector $\vec{v}_{3}=\langle 1,-1,1\rangle$, passing through $P_{3}=(-1,4,-1)$
Since \vec{v}_{2} and \vec{v}_{3} are not parallel, L_{2} and L_{3} are either intersecting or skew. We have to check if L_{2} and L_{3} have a point in common.

$$
\begin{aligned}
& L_{2}:\left\{\begin{array}{l}
x=1-3 t \\
y=2-6 t \\
z=3
\end{array} \quad L_{3}:\left\{\begin{array} { l }
{ x = - 1 + 5 } \\
{ y = 4 - 5 } \\
{ z = - 1 + 5 }
\end{array} \quad \text { Equate: } \left\{\begin{array}{r}
1-3 t=-1+5 \\
2-6 t=4-5 \\
3=-1+5
\end{array}\right.\right.\right. \\
& s=4 \rightarrow\left\{\begin{array} { l }
{ 1 - 3 t = - 1 + 4 } \\
{ 2 - 6 t = 4 - 4 }
\end{array} \quad \begin{array} { l }
{ - 3 t = 2 } \\
{ - 6 t = - 2 }
\end{array} \quad \left\{\begin{array}{l}
t=-\frac{2}{3} \text { no solution } \\
t=\frac{1}{3} \quad L_{2} \text { and } L_{3} \text { Gee }
\end{array}\right.\right. \\
& \text { SKEw } .
\end{aligned}
$$

