MATH 10C: Calculus III (Lecture B00)

mathwebucsd.edu/~ynemish/teaching/10c

Today: Equations of lines and planes

Next: Strang 3.1
Week 2:

- homework 1 (due Monday, October 3)
- survey on Canvas Quizzes (due Friday, October 7)

Cross product
Summary: Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{3}. Then $\vec{u} \times \vec{v}$ is a vector in \mathbb{R}^{3} such that

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} (right-hand rule)
- $\|\vec{u} \times \vec{v}\|=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \sin \theta$ with $\theta=$ angle between \vec{u} and \vec{v}

Consider a parallelogram spanned by vectors \vec{u} and \vec{v}

$$
\begin{aligned}
\text { Area }(\square) & =\|\vec{u}\| \cdot\|\vec{v}\| \cdot \sin \theta \\
& =\|\vec{u} \cdot \vec{v}\|
\end{aligned}
$$

Conclusion: magnitude of $\vec{u} \times \vec{v}$ is equal to the area of the parallelogram spanned by \vec{u} and \vec{v}

Volume of a parallele piped

Three-dimensional prism with six facets that are each parallelograms.

Volume $=$
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3}, consider a parallelepiped spanned by $\vec{u}, \vec{v}, \vec{w}$.
Area of the base $=$
Height =

Volume of a parallelepiped
Definition The triple scalar product of \vec{u}, \vec{v} and \vec{w} is given by
Theorem 2.10 The volume of a parallelepiped given by vectors $\vec{u}, \vec{v}, \vec{w}$ is the absolute value of the triple scalar product

Example Find the volume of the parallelepiped with adjacent edges (spanned by) $\vec{u}=\langle-1,-2,1\rangle, \vec{v}=\langle 4,3,2\rangle, \vec{w}=\langle 0,-5,-2\rangle$

$$
\begin{aligned}
& \vec{v} \times \vec{w}=\quad, \vec{u} \cdot(\vec{v} \times \vec{w})=\langle-1,-2,1\rangle \cdot\langle 4,8,-20\rangle= \\
& \quad v=|\vec{u} \cdot(\vec{v} \times \vec{w})|=
\end{aligned}
$$

Summary
Dot (scalar) product: $\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

- characterizes the angle $0 \leqslant \theta \leq \pi$ between \vec{u} and \vec{v}

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

Cross (vector) product: $\vec{u} \times \vec{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \vec{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \vec{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \vec{k}$

- gives a vector that is orthogonal to both \vec{u} and \vec{v}
- its length give the area of the parallelogram spanned by \vec{u} and $\vec{v} \quad\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \cdot \sin \theta$

Triple scalar product of \vec{u}, \vec{v} and $\vec{w}: \vec{u} \cdot(\vec{v} \times \vec{w})$

- its absolute value gives the volume of the parallelepiped spanned by \vec{u}, \vec{v} and \vec{w}.

Last remark
If you know how to compute the determinant of a 3×3 matrix, then the cross product of $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ can be computed as

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\vec{i}\left(u_{2} v_{3}-u_{3} v_{2}\right)-\bar{j}\left(u_{1} v_{3}-u_{3} v_{1}\right)+\vec{k}\left(u_{1} v_{2}-u_{2} v_{1}\right)
$$

Similarly, the triple scalar product of $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right), \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ can be computed as

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=u_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)-u_{2}\left(v_{1} w_{3}-v_{3} w_{1}\right)+u_{3}\left(v_{1} w_{2}-v_{2} w_{1}\right)
$$

$\frac{\text { Equation for a line in space }}{z \uparrow}$

To describe a line in \mathbb{R}^{3} we must know either
(a) two points on the line,
or (b) one point and direction.
Let L be a line passing through points P and Q.
Point $R \rightarrow$ belongs to L if either $\overrightarrow{P R}$ has the same direction as $\overrightarrow{P Q}$, or $\overrightarrow{P R}$ has direction opposite to $\overrightarrow{P Q}$ (or $\overrightarrow{P R}=\overrightarrow{0}$).

Equation for a line in space
Vectors \vec{u} and \vec{v} are parallel if and only if
(by convention $\overrightarrow{0}$ is parallel to all vectors)
Given two distinct points P and Q, the line through P and Q is the collection of points R such that

Similarly, given point P and vector \vec{v}, the line through P with direction vector \vec{v} is the collection of points R such that

Equation for a line in space
Let $P=\left(x_{0}, y_{0}, z_{0}\right), R=(x, y, z)$ and $\vec{V}=\langle a, b, c\rangle$. Then (*) implies

$$
(* *)
$$

By equating components, we get that the coordinates of R (point on the line) satisfy the equations

$$
(* * *)
$$

If we denote $\vec{r}:=\langle x, y, z\rangle$ and $\vec{r}_{0}:=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, then from (**)

$$
(* * * x)
$$

Equation for a line in space
If a, b and c are all nonzero, we can rewrite ($* * *$)
which (since t can be any real number) is equivalent to

The 2.11 (Parametric and symmetric egs. of a line)
A line parallel to vector $\vec{V}=\langle a, b, c\rangle$ and passing through $P=\left(x_{0}, y_{0}, z_{0}\right)$ can be described by the following parametric equations:
If a, b and c are all nonzero, L can be described by the symmetric equation

Examples
Find parametric and symmetric equations of the line L passing through points $P=(3,2,1)$ and $Q=(5,1,-2)$
First, identify the direction vector $(\overrightarrow{P Q}$ or $\overrightarrow{Q P})$
Take a point on the line (either Dor Q).

Parametric equation :

Symmetric equation:

Distance between a point and a line
Consider the line L through point P with direction vector \vec{v}. Suppose M is not on the line. What is the distance between L and M ?

Theorem 2.12. Let L be a line passing through P with direction vector \vec{v}. If M is any point not on L, then

Distance between a point and a line
Example
Find the distance between $M=(3,2,1)$ and the line $\frac{x-5}{2}=\frac{y+2}{2}=-z$

Identify a point on the line:
Identify the direction vector of the line:
Compute
Finally,

Relationships between lines in \mathbb{R}^{3}
Let L_{1} and L_{2} be two lines in \mathbb{R}^{3}. Then the following four possibilities exist:

		L_{1} and L_{2} share a common point	
		YES	NO
Direction vectors of L_{1} and L_{2}	YES	Equal	Parallel but not equal
are parallel	NO	Intersecting	Skew not "parallel not intersecting

Relationships between lines in \mathbb{R}^{3}
Example
L_{1} : direction vector $\vec{v}_{1}=\langle 1,2,0\rangle$, passing through $P_{1}=(0,0,1)$
L_{2} : direction vector $\vec{v}_{2}=\langle-3,-6,0\rangle$, passing through $P_{2}=(1,2,3)$
L_{3} : direction vector $\vec{v}_{3}=\langle 1,-1,1\rangle$, passing through $P_{3}=(-1,4,-1)$
(1) L_{1} and $L_{2} \vec{v}_{1}$ parallel to \vec{v}_{2}, \quad, therefore,
L_{1} and L_{2} are either
Write equations for L_{1} :

Relationships between lines in \mathbb{R}^{3}
Example
(2) L_{1} and L_{3}
(i) $\vec{v}_{1}=\langle 1,2,0\rangle, \vec{v}_{3}=\langle\mid,-1,1\rangle$. Are \vec{v}_{1} and \vec{v}_{3} parallel? Parallel if and only if

$$
\left\{\begin{array}{l}
\text { this system has no solutions, so } \\
\text { direction vectors are } \\
L_{1} \text { and } L_{3} \text { are }
\end{array}\right.
$$

(ii) Do L_{1} and L_{3} have a point in common? If $Q=(x, y, z)$ belongs to both L_{1} and L_{3}, then the coordinates of Q must satisfy both equations

Relationships between lines in \mathbb{R}^{3}
Example

$$
\left\{\begin{array} { l }
{ x = t , } \\
{ y = 2 t , } \\
{ z = 1 , }
\end{array} \text { and } \left\{\begin{array}{l}
x=-1+s \\
y=4-5 \\
z=-1+5
\end{array} \text { for some sit } \in \mathbb{R}\right.\right.
$$

Equate the right-hand sides of the above equations

$$
\{
$$

If this system has a solution then L_{1} and L_{3} intersect

From the last equation we have. Substituting into the first two equations gives

