MATH 10C: Calculus III (Lecture B00)

mathwebueucsd.edu/~ynemish/teaching/10c

Today: Equations of lines and planes

Next: Strang 3.1

Week 2:

- homework (due Monday, October \$)
- survey on Canvas Quizzes (due Friday, October 7)

Cross product
Summary: Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{3}. Then $\vec{u} \times \vec{v}$ is a vector in \mathbb{R}^{3} such that

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} (right-hand rule)
- $\|\vec{u} \times \vec{v}\|=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \sin \theta$ with $\theta=$ angle between \vec{u} and \vec{v}

Consider a parallelogram spanned by vectors \vec{u} and \vec{v}

$\operatorname{Area}(\square)=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \sin \theta$

$$
=\|\vec{u} \times \vec{v}\|
$$

Conclusion: magnitude of $\vec{u} \times \vec{v}$ is equal to the area of the parallelogram spanned by \vec{u} and \vec{v}

Volume of a parallele piped

Three-dimensional prism with six facets that are each parallelograms.

Volume $=($ Area of the base $) \times$ Height $=|\vec{u} \cdot(\vec{V} \times \vec{W})|$
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3}, consider a parallelepiped spanned by $\vec{u}, \vec{v}, \vec{w}$.
Area of the base $=\|\vec{v} \times \vec{w}\|$

$$
\text { Height }=\left\|\operatorname{proj}_{j_{\times x} \times \vec{u}}\right\|=\frac{|\vec{u} \cdot(\vec{v} \times \vec{w})|}{\|\vec{v} \times \vec{w}\|}
$$

$$
\begin{aligned}
& \|\vec{v} \times \vec{w}\| \cdot \frac{|\vec{u} \cdot(\vec{v} \times \vec{w})|}{\|\vec{v} \times \vec{w}\|} \\
& \quad=|\vec{u} \cdot(\vec{v} \times \vec{w})|
\end{aligned}
$$

Volume of a parallele piped
Definition The triple scalar product of \vec{u}, \vec{v} and \vec{w} is given by $\vec{u} \cdot(\vec{v} \times \vec{w})$
Theorem 2.10 The volume of a parallelepiped given by vectors $\vec{u}, \vec{v}, \vec{w}$ is the absolute value of the triple scalar product $\quad V=|\vec{u} \cdot(\vec{v} \times \vec{w})|$
Example Find the volume of the parallelepiped with adjacent edges (spanned by) $\vec{u}=\langle-1,-2,1\rangle, \vec{v}=\langle 4,3,2\rangle, \vec{w}=\langle 0,-5,-2\rangle$

$$
\begin{gathered}
\vec{v} \times \vec{w}=\langle 4,8,-20\rangle, \vec{u} \cdot(\vec{v} \times \vec{w})=\langle-1,-2,1\rangle \cdot\langle 4,8,-20\rangle=-4-16-20=-40 \\
V=|\vec{u} \cdot(\vec{v} \times \vec{w})|=|-40|=40
\end{gathered}
$$

Summary
Dot (scalar) product: $\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

- characterizes the angle $0 \leqslant \theta \leq \pi$ between \vec{u} and \vec{v}

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

Cross (vector) product: $\vec{u} \times \vec{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \vec{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \vec{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \vec{k}$

- gives a vector that is orthogonal to both \vec{u} and \vec{v}
- its length give the area of the parallelogram spanned by \vec{u} and $\vec{v} \quad\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \cdot \sin \theta$

Triple scalar product of \vec{u}, \vec{v} and $\vec{w}: \vec{u} \cdot(\vec{v} \times \vec{w})$

- its absolute value gives the volume of the parallelepiped spanned by \vec{u}, \vec{v} and \vec{w}.

Last remark
If you know how to compute the determinant of a 3×3 matrix, then the cross product of $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ can be computed as

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\vec{i}\left(u_{2} v_{3}-u_{3} v_{2}\right)-\bar{j}\left(u_{1} v_{3}-u_{3} v_{1}\right)+\vec{k}\left(u_{1} v_{2}-u_{2} v_{1}\right)
$$

Similarly, the triple scalar product of $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right), \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ can be computed as

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=u_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)-u_{2}\left(v_{1} w_{3}-v_{3} w_{1}\right)+u_{3}\left(v_{1} w_{2}-v_{2} w_{1}\right)
$$

$\frac{\text { Equation for a line in space }}{z \uparrow}$

To describe a line in \mathbb{R}^{3} we must know either (a) two points on the line, or (b) one point and direction.
Let L be a line passing through points P and Q.
Point R belongs to L if $\overrightarrow{P R}$ is parallel to $\overrightarrow{P Q}$, ie., either $\overrightarrow{P R}$ has the same direction as $\overrightarrow{P Q}$, or $\overrightarrow{P R}$ has direction opposite to $\overrightarrow{P Q}$ (or $\overrightarrow{P R}=\overrightarrow{0}$).

Equation for a line in space
Vectors \vec{u} and \vec{v} are parallel if and only if $\vec{u}=k \vec{v}$ for some $k \in \mathbb{R}$
(by convention $\overrightarrow{0}$ is parallel to all vectors)
Given two distinct points P and Q, the line through P and Q is the collection of points R such that

$$
\overrightarrow{P R}=t \overrightarrow{P Q} \quad \text { for a real number } t \in \mathbb{R}
$$

Similarly, given point P and vector \vec{v}, the line through P with direction vector \vec{v} is the collection of points R such that $\quad \overrightarrow{P R}=t \vec{v}$ for a real number $t \in \mathbb{R}$

Equation for a line in space
Let $P=\left(x_{0}, y_{0}, z_{0}\right), R=(x, y, z)$ and $\vec{V}=\langle a, b, c\rangle$. Then
(*) implies

$$
\overrightarrow{P R}=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=\left\langle t_{a}, t b, t c\right\rangle \quad(* *)
$$

By equating components, we get that the coordinates of R (point on the line) satisfy the equations parametric equations of aline $\left\{\begin{array}{ll}x=x_{0}+t a \\ y=y_{0}+t b \\ z=z_{0}+t c & , t \in \mathbb{R}\end{array} \quad \begin{array}{l}\frac{x-z_{0}}{a}=t \\ \frac{y-y_{0}}{b}=t \\ \frac{z-z_{0}}{c}=t\end{array} \quad(* * *)\right.$
If we denote $\vec{r}:=\langle x, y, z\rangle$ and $\vec{r}_{0}:=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, then from (**) $\quad \vec{r}=\vec{r}_{0}+t \vec{v}$ (vector equation of a line) $(* * * x)$

Equation for a line in space
If a, b and c are all nonzero, we can rewrite $(* * *)$

$$
\frac{x-x_{0}}{a}=t, \quad \frac{y-y_{0}}{b}=t, \quad \frac{z-z_{0}}{c}=t
$$

which (since t can be any real number) is equivalent to $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} \quad \begin{aligned} & \text { symmetric } \\ & \text { equations of a line }\end{aligned}(* * * * *)$
The 2.11 (Parametric and symmetric eggs. of a line)
A line parallel to vector $\vec{V}=\langle a, b, c\rangle$ and passing through $P=\left(x_{0}, y_{0}, z_{0}\right)$ can be described by the following parametric equations: $x=x_{0}+t_{a}, y=y_{0}+t b, z=z_{0}+t_{c}, \quad t \in \mathbb{R}$
If a, b and c are all nonzero, L can be described by the symmetric equation $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

Examples
Find parametric and symmetric equations of the line L passing through points $P=(3,2,1)$ and $Q=(5,1,-2)$
First, identify the direction vector ($\overrightarrow{P Q}$ or $\overrightarrow{Q P}$)

$$
\overrightarrow{P Q}=\langle 2,-1,-3\rangle
$$

Take a point on the line (either P or Q).

$$
\text { Parametric equation : }\left\{\begin{array}{l}
x=3+2 t \\
(x, y, z)
\end{array}:\left\{\begin{array}{l}
y=t \\
z=1-3 t
\end{array}\right.\right.
$$

Symmetric equation: $\quad \frac{x-3}{2}=\frac{y-2}{-1}=\frac{z-1}{-3}$

