MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: The cross product

Next: Strang 2.4

Week 2:

- homework 2 (due Monday, October 10)
- survey on Canvas Quizzes (due Friday, October 7)

The cross product
Def Let $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$.
Then the cross product of \vec{u} and \vec{v} is vector

$$
\vec{u} \times \vec{v}=
$$

$$
=
$$

Example

$$
\vec{p}=\langle 1,2,3\rangle, \quad \vec{q}=\langle-1,2,0\rangle
$$

$$
\begin{aligned}
\vec{p} \times \vec{q} & = \\
& =
\end{aligned}
$$

$$
\vec{p} \cdot(\vec{p} \times \vec{q})=
$$

$$
\text { , } \vec{q} \cdot(\vec{p} \times \vec{q})=
$$

The cross product
Fact: Vector $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} !
 and the direction is determined by the right-hand rule.

Indeed,

$$
\begin{aligned}
& \vec{p}=\langle 1,2,3\rangle, \quad \vec{q}=\langle-1,2,0\rangle, \quad \vec{p} \times \vec{q}=\langle-6,-3,4\rangle \\
& \vec{q} \times \vec{p}= \\
& \\
& =
\end{aligned}
$$

Properties of the cross product
Exercise $\quad \vec{i} \times \vec{j}=\langle 1,0,0\rangle \times\langle 0,1,0\rangle=$

$$
\begin{array}{ll}
& = \\
\vec{i} \times \vec{j}= & \vec{j} \times \vec{k}=\quad \vec{k} \times \vec{i}=
\end{array}
$$

Theorem 2.6 Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3}. Then
(i) $\vec{u} \times \vec{v}=$
(ii) $\vec{u} \times(\vec{v}+\vec{w})=$
(iii) $c(\vec{u} \times \vec{v})=$
(iv) $\vec{u} \times \overrightarrow{0}=\overrightarrow{0} \times \vec{u}=$

For proof expand
(v) $\vec{v} \times \vec{v}=$ both sides in terms
(vi) $\vec{u} \cdot(\vec{v} \times \vec{w})=$ of components of $\vec{u}, \vec{v}, \vec{w}$

Properties of cross product
In general, $(\vec{u} \times \vec{v}) \times \vec{w} \neq \vec{u} \times(\vec{v} \times \vec{w})$

$$
\begin{aligned}
& (\vec{i} \times \vec{i}) \times \vec{j}= \\
& \vec{i} \times(\vec{i} \times \vec{j})=
\end{aligned}
$$

Example (a) Calculate $(2 \vec{i}) \cdot((3 \vec{j}) \times \vec{k}+\vec{i} \times(-4) \vec{k})$

$$
\begin{aligned}
(2 \vec{i}) & \times((3 \vec{j}) \times \vec{k}+\vec{i} \times(-4) \vec{k})= \\
& = \\
& =
\end{aligned}
$$

(b) Show that $\vec{u} \times \vec{v}$ is orthogonal to \vec{u} and \vec{v}

$$
\begin{aligned}
& \vec{u} \cdot(\vec{u} \times \vec{v})= \\
& \vec{v} \cdot(\vec{u} \times \vec{v})=
\end{aligned}
$$

Magnitude of the cross product
Fact. Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{3}. Then

Proof. Expand both sides using components $\vec{u}=\left\langle u_{1}, u_{2}, v_{3}\right\rangle$ $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$

Theorem 2.7 Let \vec{u} and \vec{v} be vectors, let θ be the angle between them. Then

$$
\|\vec{u} \times \vec{v}\|=
$$

Proof From (*) $\|\vec{u} \times \vec{v}\|^{2}=$
From Thy. $2.4 \quad \vec{u} \cdot \vec{v}=$
Then

$$
\|\vec{u}\| \cdot\|\vec{v}\|=
$$

Geometric interpretation
Summary: Let \vec{u} and \vec{v} be vectors in \mathbb{R}^{3}. Then $\vec{u} \times \vec{v}$ is a vector in \mathbb{R}^{3} such that

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} (right-hand rule)
- $\|\vec{u} \times \vec{v}\|=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \sin \theta$ with $\theta=$ angle between \vec{u} and \vec{v}

Consider a parallelogram spanned by vectors \vec{u} and \vec{v}

Conclusion: magnitude of $\vec{u} \times \vec{v}$ is equal to the

Example
Let $P=(1,2,1), Q=(2,-3,1), R=(0,0,-1)$ be the vertices on a triangle. Find its area.

$$
\begin{array}{ll}
\overrightarrow{P Q}= & \overrightarrow{P R}= \\
\overrightarrow{P Q} \times \overrightarrow{P R}= & , \text { Area }(\Delta)= \\
\overrightarrow{P Q} \times \overrightarrow{P R} \|=
\end{array}
$$

Volume of a parallele piped

Three-dimensional prism with six facets that are each parallelograms.

Volume $=$
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3}, consider a parallelepiped spanned by $\vec{u}, \vec{v}, \vec{w}$.
Area of the base $=$
Height =

Volume of a parallelepiped
Definition The triple scalar product of \vec{u}, \vec{v} and \vec{w} is given by
Theorem 2.10 The volume of a parallelepiped given by vectors $\vec{u}, \vec{v}, \vec{w}$ is the absolute value of the triple scalar product

Example Find the volume of the parallelepiped with adjacent edges (spanned by) $\vec{u}=\langle-1,-2,1\rangle, \vec{v}=\langle 4,3,2\rangle, \vec{w}=\langle 0,-5,-2\rangle$

$$
\begin{aligned}
& \vec{v} \times \vec{w}=\quad, \vec{u} \cdot(\vec{v} \times \vec{w})=\langle-1,-2,1\rangle \cdot\langle 4,8,-20\rangle= \\
& \quad v=|\vec{u} \cdot(\vec{v} \times \vec{w})|=
\end{aligned}
$$

Summary
Dot (scalar) product: $\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$

- characterizes the angle $0 \leqslant \theta \leq \pi$ between \vec{u} and \vec{v}

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

Cross (vector) product: $\vec{u} \times \vec{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \vec{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \vec{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \vec{k}$

- gives a vector that is orthogonal to both \vec{u} and \vec{v}
- its length gives the area of the parallelogram spanned by \vec{u} and $\vec{v} \quad\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \cdot \sin \theta$

Triple scalar product of \vec{u}, \vec{v} and $\vec{w}: \vec{u} \cdot(\vec{v} \times \vec{w})$

- its absolute value gives the volume of the parallelepiped spanned by \vec{u}, \vec{v} and \vec{w}.

Last remark
If you know how to compute the determinant of a 3×3 matrix, then the cross product of $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ can be computed as

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\vec{i}\left(u_{2} v_{3}-u_{3} v_{2}\right)-\bar{j}\left(u_{1} v_{3}-u_{3} v_{1}\right)+\vec{k}\left(u_{1} v_{2}-u_{2} v_{1}\right)
$$

Similarly, the triple scalar product of $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right), \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$ can be computed as

$$
\vec{u} \cdot(\vec{v} \times \vec{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|=u_{1}\left(v_{2} w_{3}-v_{3} w_{2}\right)-u_{2}\left(v_{1} w_{3}-v_{3} w_{1}\right)+u_{3}\left(v_{1} w_{2}-v_{2} w_{1}\right)
$$

