# MATH 10C: Calculus III (Lecture B00) 

## mathwebucucsd.edu/~ynemish/teaching/10c

## Today: The dot product

## Next: Strang 2.4

Week 2:

- homework 1 (due Monday, October 3)
- survey on Canvas Quizzes (due Friday, October 7)

Dot product (scalar product) of vectors Def If $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\vec{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ are two vectors in $\mathbb{R}^{3}$, then the dot product or the scalar product of $\vec{v}$ and $\vec{w}$ is given by the sum of products of vector components

$$
\begin{aligned}
& \vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}\left(\text { in } \mathbb{R}^{2} \vec{v}=\left\langle v_{1}, v_{2}\right\rangle\right. \\
& \vec{u}=\left\langle u_{1}, u_{2}\right\rangle \\
& \vec{v} \cdot \vec{u}=v_{1} u_{1}+v_{2} u_{2}
\end{aligned}
$$

$\frac{\text { Theorem } 2.4}{\text { If }}$

then $\quad \vec{u} \cdot \vec{v}=\|\vec{u}\| \cdot\|\vec{v}\| \cdot \cos \theta$

Dot product and angles between vectors
From Theorem 2.4 we have

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}, \quad \theta=\arccos \left(\frac{\langle\vec{u}, \vec{v}\rangle}{\|\vec{u}\|\|\vec{v}\|}\right)
$$

Examples
Find the angle between $\vec{u}$ and $\vec{v}$
(a)

$$
\begin{array}{ll}
\vec{u}=-\vec{i}+2 \vec{j}-\vec{k}, \quad \vec{v}=\vec{i}+2 \vec{j} \\
\|\vec{u}\|= & \|\vec{v}\|= \\
\vec{u} \cdot \vec{v}= & \Rightarrow \cos \theta=\quad, \theta=
\end{array}
$$

(b) $\vec{u}=\langle 1,2,3\rangle, \vec{v}=\langle-7,2,1\rangle$

$$
\vec{u} \cdot \vec{v}=
$$

$$
\Rightarrow \cos \theta=\quad \Rightarrow \theta=
$$

Orthogonal vectors
If $\cos \theta=0$, then $\theta=\frac{\pi}{2}$, which means that the vectors form a right angle
We call such vectors


Theorem 2.5
The nonzero vectors $\vec{u}$ and $\vec{v}$ are orthogonal
Example Determine whether $\vec{p}=\langle 1,3,0\rangle$ and $\vec{q}=\langle-6,2,5\rangle$ are orthogonal. Since $\vec{p} \cdot \vec{q}=$
we conclude that $\vec{p}$ and $\vec{q}$ are

Orthogonality of standard unit vectors
Recall: $\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle, \vec{k}=\langle 0,0,1\rangle$
Then $\quad \vec{i} \cdot \vec{i}=\vec{j} \cdot \vec{j}=\vec{k} \cdot \vec{k}=1$
$\vec{i} \cdot \vec{j}=$

$$
\vec{i} \cdot \vec{j}=\vec{i} \cdot \vec{k}=\vec{j} \cdot \vec{k}=
$$

We say that $\vec{i}, \vec{j}, \vec{k}$ are
Example

$$
\begin{aligned}
& (10 \vec{i}-\vec{j}) \cdot(-\vec{i}+2 \vec{k}) \\
& = \\
& = \\
& \langle 10,-1,0\rangle \cdot\langle-1,0,2\rangle=
\end{aligned}
$$

Using vectors to represent data
Fruit vendor sells apples, bananas and oranges. On a given day he sells 30 apples, 12 bananas and 18 oranges. Define the vector

$$
\vec{q}=
$$

Suppose that the vendor sets the following prices 0.5 per apple, 0.25 per banana, I per orange

Define the vector of prices

$$
\vec{p}=
$$

Then $\quad \vec{q} \cdot \vec{p}=$ is vendor's

Projections
Let $\vec{u}$ and $\vec{v}$ be two vectors. Sometimes we want to decompose $\vec{v}$ into two components $\vec{v}=\vec{a}+\vec{b}$ such that $\vec{a}$ is parallel to $\vec{u}$
 and $\vec{b}$ is orthogonal to $\vec{u}$ Why?
(1) Find the area of Area of this triangle is
(2) Child pulls a wagon How much force is actually moving the wagon forward?

Projections

$$
\|\vec{a}\|=
$$



$$
\vec{a}=
$$

Def (Projection). The vector projection of $\vec{v}$ onto $\vec{u}$ is the vector labeled proj$\vec{u} \vec{v}$ given by

$$
\operatorname{proj}_{\vec{u}} \vec{v}=
$$

The length of $\operatorname{proj} \vec{u} \vec{v},\|p r o j \vec{u} \vec{v}\|=$
is called the scalar projection of $\vec{v}$ onto $\vec{u}$

Projections
Let $\vec{v}$ and $\vec{u}$ be nonzero vectors. Then $\vec{u}$ and $\vec{v}$-proj $\vec{u} \vec{V}$ are

$$
\vec{u} \cdot\left(\vec{v}-\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u}\right)=
$$

Example Find the projection of $\langle-2,2\rangle$ onto $\langle 4,1\rangle$ $\langle\langle-2,2\rangle| \vec{v} \quad$ resolution of $\vec{v} \quad \operatorname{proj}_{\vec{u}} \vec{v}=$


$$
=
$$

$$
\vec{v}-\operatorname{proj}_{\vec{u}} \vec{v}=
$$

Projections
Example Find the projection of $\langle-2,2,3\rangle$ on to $\langle 10,-1,0\rangle$

$$
\begin{aligned}
\operatorname{proj}_{\vec{u}} \vec{v} & =\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u} \\
& =
\end{aligned}
$$

$$
=
$$

Example


Ship travels $15^{\circ}$ north of east with engine generating a speed of 20 knots in this direction. The ocean current moves the ship NW at a speed of 2 knots. How much does the current slow the movement of the ship in the direction of $\vec{u}$.

$$
\operatorname{proj}_{\vec{u}} \vec{v}=
$$

The cross product
Def Let $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$.
Then the cross product of $\vec{u}$ and $\vec{v}$ is vector

$$
\vec{u} \times \vec{v}=
$$

$$
=
$$

Example

$$
\vec{p}=\langle 1,2,3\rangle, \quad \vec{q}=\langle-1,2,0\rangle
$$

$$
\begin{aligned}
\vec{p} \times \vec{q} & = \\
& =
\end{aligned}
$$

$$
\vec{p} \cdot(\vec{p} \times \vec{q})=
$$

$$
\text { , } \vec{q} \cdot(\vec{p} \times \vec{q})=
$$

The cross product
Fact: Vector $\vec{u} \times \vec{v}$ is orthogonal to both $\vec{u}$ and $\vec{v}$ !
 and the direction is determined by the right-hand rule.

Indeed,

$$
\begin{aligned}
& \vec{p}=\langle 1,2,3\rangle, \quad \vec{q}=\langle-1,2,0\rangle, \quad \vec{p} \times \vec{q}=\langle-6,-3,4\rangle \\
& \vec{q} \times \vec{p}= \\
& \\
& =
\end{aligned}
$$

Properties of the cross product
Exercise $\quad \vec{i} \times \vec{j}=\langle 1,0,0\rangle \times\langle 0,1,0\rangle=$

$$
\begin{array}{ll} 
& = \\
\vec{i} \times \vec{j}= & \vec{j} \times \vec{k}=\quad \vec{k} \times \vec{i}=
\end{array}
$$

Theorem 2.6 Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in $\mathbb{R}^{3}$. Then
(i) $\vec{u} \times \vec{v}=$
(ii) $\vec{u} \times(\vec{v}+\vec{w})=$
(iii) $c(\vec{u} \times \vec{v})=$
(iv) $\vec{u} \times \overrightarrow{0}=\overrightarrow{0} \times \vec{u}=$

For proof expand
(v) $\vec{v} \times \vec{v}=$ both sides in terms
(vi) $\vec{u} \cdot(\vec{v} \times \vec{w})=$ of components of $\vec{u}, \vec{v}, \vec{w}$

