MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: Vectors in the plane. Vectors in three dimensions Next: Strang 2.3

Week 1:

- check the course website
- homework 1 (due Friday, September 30)
- join Piazza, Edfinity

Last time
Def. A vector is a quantity that has both magnitude (size, length) and direction
Forces, displacements, velocity are described by vectors.
A vector in a plane is represented by a directed line segment from the initial point to the terminal point.
We say that \vec{v} and \vec{w} are equivalent if they have the same direction and magnitude (denoted $\vec{v}=\vec{w}$) We treat equivalent vectors as equal.

Scalar multiplication
Let \vec{v} be a vector and k be a real number Then $k \vec{v}$, called
is a vector such that

$$
\|k \vec{v}\|=
$$

$k \vec{v}$ has the
as \vec{v} if
$k \vec{V}$ has the direction
to the direction of \vec{v} if
Example If $k=0$ or $\vec{v}=0$, then

Vector addition
Let \vec{v} and \vec{w} be two vectors. Place the initial point of \vec{w} at the terminal point of \vec{v}. Then the vector with initial point at the initial point of \vec{v} and the terminal point at the terminal point of \vec{W} is called the \qquad , and is denoted $\vec{v}+\vec{w}$.
Example

Notice that

Definition of a vector
Airplane flies NE at 600 mph (relative to the air)
Wind blows SE at 60 mph

How fast does the airplane fly relative to the ground?
 In what direction?

Combining vectors
We know how to define (geometrically) $k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}$ or $k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}+k_{3} \vec{v}_{3} \ldots$

Example

- $\vec{w}-\vec{v}$

- $2 \vec{v}+\frac{1}{2} \vec{w}$

$$
2 \vec{v}
$$

Vector components
It is easier to work with vectors in a coordinate system. Since the location of the initial vector does not matter, let's place all vectors in the plane so that their initial points

We call such vectors
 , and they can be described by the

Vector components
Def. The vector with initial point $(0,0)$ and the terminal point (x, y) can be written in component form the

$$
\begin{aligned}
& \vec{a}= \\
& \vec{b}= \\
& \vec{d}= \\
& \vec{e}=
\end{aligned}
$$

Vector components
If the vector is not in standard position, but we know the coordinates of its initial and terminal points, then we can find the vectors coordinates using the following rule:

Let $P=\left(x_{i}, y_{i}\right)$ and $Q=\left(x_{t}, y_{t}\right)$. Then
$\vec{a}:$

Magnitude of the vector
Magnitude of the vector is the distance between its initial and terminal points.
If $P=\left(x_{i}, y_{i}\right), Q=\left(x_{t}, y_{t}\right)$, then
If $\vec{v}=\langle x, y\rangle$, then

Example - $P=(2,-3), Q=(4,0)$

- $\vec{a}=\langle 2,3\rangle$

Vector operations in component form
Def. Let $\vec{v}=\left\langle x_{1}, y_{1}\right\rangle, \vec{w}=\left\langle x_{2}, y_{2}\right\rangle, k \in \mathbb{R}$.

Then $\cdot k \vec{v}=$

- $\vec{v}+\vec{w}=$
(scalar multiplication) (vector addition)

- $\vec{v}+\vec{w}=$
- $\vec{w}-\vec{v}=$
- $2 \vec{v}+\frac{1}{2} \vec{w}=$

$$
\begin{aligned}
& \vec{v}=\langle-3,3\rangle \\
& \vec{w}=\langle 7,2\rangle
\end{aligned}
$$

Properties of vector operations
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in the plane. Let r, s be scalars. Then
(i) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(commutative property)
(ii) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ (associative property)
(iii) $\vec{u}+\vec{o}=\vec{u}$ (additive identity property)
(iv) $\vec{u}+(-\vec{u})=\overrightarrow{0}$
(additive inverse property)
(v) $r(s \vec{u})=(r s) \vec{u}$ (associativity of scalar mull.)
(vi) $(r+s) \vec{u}=r \vec{u}+s \vec{u}$ (distributive property)
(vii) $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$ (distributive property)
(viii) $1 \cdot \vec{u}=\vec{u}, 0 \cdot \vec{u}=\overrightarrow{0}$ (identify and zero properties)

Vector components and trigonometry
We can describe the direction of the vector in different ways. For example, using the angle that the vector forms with the axes. We can switch between this representation and the component form using trigonometry.
Example Find the component form of a vector with magnitude 4 that forms an angle -120° with the x-axis.

Unit vectors. Standard unit vectors
A unit vector is a vector with magnitude 1.
For any nonzero vector \vec{v} we can find a unit vector \vec{u} that has the same direction as \vec{v}
Take $\vec{u}=$, then \vec{u} has the same direction as \vec{v} and $\|\vec{u}\|=\left\|\frac{1}{\| \vec{v}}\right\| \vec{v} \|=$
Example $\vec{v}=\langle-1,4\rangle,\|\vec{v}\|=$
Consider the vectors $\vec{i}:=\langle 1,0\rangle, \vec{j}:=\langle 0,1\rangle$

We call \vec{i} and \vec{j} the
in the plane
We can write any vector in the plane as a combination on \vec{i} and \vec{j}
$\vec{v}=\langle a, b\rangle$, then $\vec{v}=$

Vectors in the plane. Summary

- geometrically/physically vectors describe displacement, velocity, force; in plane they represented by arrows
- two vector operations: scalar product and vector sum
- coordinates make vector operations easy to perform
- component form of a vector $\vec{v}=\left\langle x_{1}, y_{1}\right\rangle, \vec{w}=\left\langle x_{2}, y_{2}\right\rangle$
- scalar multiplication and vector addition become componentwise: $k \vec{v}=\left\langle k x_{1}, k y_{1}\right\rangle, \vec{v}+\vec{w}=\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle$

$$
k_{1} \vec{v}+k_{2} \vec{w}=\left\langle k_{1} x_{1}+k_{2} x_{2}, k_{1} y_{1}+k_{2} y_{2}\right\rangle
$$

- $\vec{i}=\langle 1,0\rangle$ and $\vec{j}=\langle 0,1\rangle$ are called standard unit vectors
- $\vec{v}=\langle x, y\rangle$ can be written as a combination of \vec{i} and \vec{j}

$$
\langle x, y\rangle=x \vec{i}+y \vec{j}
$$

Points in three dimensions
Life happens in three dimensions!
The mathematical model of the three-dimensional space is the three-dimensional rectangular coordinate system \mathbb{R}^{3}. \mathbb{R}^{3} consists of points (x, y, z), where x, y, z are real numbers $1 D: \mathbb{R}, 2 D: \mathbb{R}^{2}, 3 D: \mathbb{R}^{3}$

Coordinate planes. Octants
There are three axes in \mathbb{R}^{3} (orthogonal to each other). If we fix any two axes we get a coordinate plane

$x y$ plane: \{
\} setting
$x z$ plane: \{
\} setting
ez plane: \{
\} setting

Three coordinate planes split \mathbb{R}^{3} into eight octants consisting of points with three nonzero coordinates

Distance in \mathbb{R}^{3}
Theorem 2.2. Distance between two points in space The distance d between points $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ is given by the formula

Example

Equations in \mathbb{R}^{3}

\mathbb{R}

$$
x=0
$$

$$
x=0
$$

Equations of planes parallel to coordinate planes
Rule $z=c$: equation of a plane parallel to the $x y$-plane containing point $P=(a, b, c)$
$y=b$: equation of a plane parallel to the $x z$-plane containing point $P=(a, b, c)$
$x=a$: equation of a plane parallel to the $y z$-plane containing point $P=(a, b, c)$

Write an equation of the plane parallel to $x y$-plane passing through the point $P=(2,3,4)$

Equation of a sphere
Given point P, describe all points that are at distance $r>0$ from P.

Equation of a sphere
Example Find the standard equation of the sphere with center $(2,3,4)$ and point $(0,11,-1)$
In order to write the equation of a sphere we need to know the center (given) and the radius (unknown). Radius is the distance from the center of the sphere to any point of the sphere (in particular to $(0,11,-1)$) Therefore,

$$
\begin{array}{r}
r= \\
\\
= \\
=
\end{array}
$$

Equation of the sphere:

Vectors in \mathbb{R}^{3}
Complete analogy with vectors in the plane

- vectors are quantities with both magnitude and direction
- vectors are represented by directed line segments (arrows)
- vector is in the standard position if its initial point is $(0,0,0)$
- vectors admit the component representation $\vec{v}=\langle x, y, z\rangle$
- $\overrightarrow{0}=\langle 0,0,0\rangle$
- vector addition and scalar multiplication are defined analogously to plane vectors:

- in the component form:

$$
k_{1}\left\langle x_{1}, y_{1}, z_{1}\right\rangle+k_{2}\left\langle x_{2}, y_{2}, z_{2}\right\rangle=\left\langle k_{1} x_{1}+k_{2} x_{2}, k_{1} y_{1}+k_{2} y_{2}, k_{1} z_{1}+k_{2} z_{2}\right\rangle
$$

- $\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle, \vec{k}=\langle 0,0,1\rangle$ are standard unit vectors in \mathbb{R}^{3}

Vectors in \mathbb{R}^{3}

- if $\vec{v}=\langle x, y, z\rangle$, then $\vec{v}=x \vec{i}+y \vec{j}+z \vec{k}$ (standard unit form)
- if $P=\left(x_{i}, y_{i}, z_{i}\right), Q=\left(x_{t}, y_{t}, z_{t}\right)$, then $\overrightarrow{P Q}=\left\langle x_{t}-x_{i}, y_{t}-y_{i}, z_{t}-z_{i}\right\rangle$
- if $\vec{v}=\langle x, y, z\rangle$, then $\|\vec{v}\|=\sqrt{x^{2}+y^{2}+z^{2}}$
- to find the unit vector in the direction $\vec{v}=\langle x, y, z\rangle$, multiply \vec{v} by $\frac{1}{\|\vec{v}\|}: \vec{u}=\left\langle\frac{x}{\|\vec{v}\|}, \frac{y}{\|\vec{v}\|}, \frac{z}{\|\vec{v}\|}\right\rangle$
Example Let $P=(0,3,-2), Q=(2,2,2)$. Express $\overrightarrow{P Q}$ in component form and in standard unit form.

$$
\overrightarrow{P Q}=
$$

Example Let $\vec{v}=\langle 2,0,6\rangle, \vec{w}=\langle 1,-1,-2\rangle$. Then

$$
\begin{aligned}
& \vec{v}+3 \vec{w}= \\
& \|\vec{v}+3 \vec{w}\|=
\end{aligned}
$$

Properties of vector operations
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^{3}. Let r, s be scalars.
Then
(i) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(commutative property)
(ii) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ (associative property)
(iii) $\vec{u}+\vec{o}=\vec{u}$ (additive identity property)
(iv) $\vec{u}+(-\vec{u})=\overrightarrow{0}$ (additive inverse property)
(v) $r(s \vec{u})=(r s) \vec{u}$ (associativity of scalar mull.)
(vi) $(r+s) \vec{u}=r \vec{u}+s \vec{u}$ (distributive property)
(vii) $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$ (distributive property)
(viii) $1 \cdot \vec{u}=\vec{u}, 0 \cdot \vec{u}=\overrightarrow{0}$ (identity and zero properties)

