MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: Vectors in the plane. Vectors in three dimensions Next: Strang 2.3

Week 1:

- check the course website
- homework 1 (due Friday, September 30) $\vec{v}=\langle x, y\rangle$
- join Piazza, Edfinity

Last time
Def. A vector is a quantity that has both magnitude (size, length) and direction
Forces, displacements, velocity are described by vectors.
A vector in a plane is represented by a directed line segment from the initial point to the terminal point.
We say that \vec{v} and \vec{w} are equivalent if they have the same direction and magnitude (denoted $\vec{v}=\vec{w}$) We treat equivalent vectors as equal.

Scalar multiplication
Let \vec{v} be a vector and k be a real number (scalar) Then $k \vec{v}$, called the scalar product of k and \vec{v}, is a vector such that

$$
\|k \vec{v}\|=|k| \cdot\|\vec{v}\|
$$

$k \vec{v}$ has the same direction as \vec{v} if $k>0$
$k \vec{v}$ has the direction opposite to the direction of \vec{v} if $k<0$

Example

$$
0 \cdot \vec{v}=\overrightarrow{0}
$$

$$
-\vec{v}=(-1) \vec{v} \quad-\frac{1}{2} \vec{v}
$$

Vector addition
Let \vec{v} and \vec{w} be two vectors. Place the initial point of \vec{w} at the terminal point of \vec{v}. Then the vector with initial point at the initial point of \vec{v} and the terminal point at the terminal point of \vec{W} is called the vector sum of \vec{v} and \vec{w}, and is denoted $\vec{v}+\vec{w}$.

Example

Notice that $\vec{v}+\vec{w}=\vec{w}+\vec{v}$

Definition of a vector
Airplane flies NE at 600 mph (relative to the air)
Wind blows SE at 60 mph

How fast does the airplane fly relative to the ground?
 In what direction?

Combining vectors
We know how to define (geometrically) $k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}$ or $k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}+k_{3} \vec{v}_{3} \ldots$ (linear combination of vectors)

Example
\vec{v}

$$
\text { - } \vec{w}-\vec{v}:=\vec{w}+(-1) \vec{v}
$$

Vector components
It is easier to work with vectors in a coordinate system. Since the location of the initial vector does not matter, let's place all vectors in the plane so that their initial points coincide with the origin

We call such vectors standard-positioned vectors, and they can be described by the coordinates of the terminal points

Vector components
Def. The vector with initial point $(0,0)$ and the terminal point (x, y) can be written in component form as $\vec{v}=\langle x, y\rangle$. The scalars x and y are called the components of \vec{v}

$$
\begin{aligned}
& \vec{a}=\langle 2,3\rangle \\
& \vec{b}=\langle-2,-3\rangle \\
& \vec{d}=\langle 4,6\rangle \\
& \vec{e}=\langle-2,3\rangle
\end{aligned}
$$

Vector components
If the vector is not in standard position, but we know the coordinates of its initial and terminal points, then we can find the vectors coordinates using the following rule:

Let $P=\left(x_{i}, y_{i}\right)$ and $Q=\left(x_{t}, y_{t}\right)$. Then

$$
\overrightarrow{P Q}=\left\langle x_{t}-x_{i}, y_{t}-y_{i}\right\rangle
$$

$$
\left.\begin{array}{l}
\vec{a}: P=(2,-3), Q=(4,0) \\
\vec{a}=\overrightarrow{P Q}
\end{array}=\langle 4-2,0-(-3)\rangle\right)=\langle 2,3\rangle
$$

Magnitude of the vector
Magnitude of the vector is the distance between its initial and terminal points.
If $P=\left(x_{i}, y_{i}\right), Q=\left(x_{t}, y_{t}\right)$, then $\|\overrightarrow{P Q}\|=\sqrt{\left(x_{t}-x_{i}\right)^{2}+\left(y_{t}-y_{i}\right)^{2}}$
If $\vec{v}=\langle x, y\rangle$, then $\|\vec{v}\|=\sqrt{x^{2}+y^{2}}$

Example $P=(\underset{\overrightarrow{~(2,-3)}}{(2)} Q=(4,0)$

$$
\begin{aligned}
& \|\overrightarrow{P Q}\|=\sqrt{(4-2)^{2}+(0-(-3))^{2}}=\sqrt{2^{2}+3^{2}}=\sqrt{13} \\
& =\langle 2,3\rangle \\
& \|\vec{a}\|=\sqrt{2^{2}+3^{2}}=\sqrt{13}
\end{aligned}
$$

$$
\cdot \vec{a}=\langle 2,3\rangle
$$

Vector operations in component form
Def. Let $\vec{v}=\left\langle x_{1}, y_{1}\right\rangle, \vec{w}=\left\langle x_{2}, y_{2}\right\rangle, k \in \mathbb{R}$.
Then $k \vec{v}=\left\langle k x_{1}, k y_{1}\right\rangle$ (scalar multiplication)

- $\vec{v}+\vec{w}=\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle$ (vector addition)

Example

$$
\begin{aligned}
& \vec{v}=\langle-3,3\rangle \\
& \vec{w}=\langle 7,2\rangle
\end{aligned}
$$

- $\vec{v}+\vec{w}=\langle-3+7,3+2\rangle=\langle 4,5\rangle$
- $\vec{w}-\vec{v}=\langle 7-(-3), 2-3\rangle=\langle 10,-1\rangle$
- $2 \vec{v}+\frac{1}{2} \vec{w}=\left\langle 2 \cdot(-3)+\frac{1}{2} \cdot 7,2 \cdot 3+\frac{1}{2} \cdot 2\right\rangle=\langle-2.5,7\rangle$

Properties of vector operations
Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in the plane. Let r, s be scalars. Then
(i) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(commutative property)
(ii) $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$ (associative property)
(iii) $\vec{u}+\vec{o}=\vec{u}$ (additive identity property)
(iv) $\vec{u}+(-\vec{u})=\overrightarrow{0}$
(additive inverse property)
(v) $r(s \vec{u})=(r s) \vec{u}$ (associativity of scalar mull.)
(vi) $(r+s) \vec{u}=r \vec{u}+s \vec{u}$ (distributive property)
(vii) $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$ (distributive property)
(viii) $1 \cdot \vec{u}=\vec{u}, 0 \cdot \vec{u}=\overrightarrow{0}$ (identify and zero properties)

