MATH 10C: Calculus III (Lecture B00)

mathwebu.ucsd.edu/~ynemish/teaching/10c

Today: Method of Lagrange multipliers
 Next: Review

Week 10:

- Homework 8 due Friday, December 2
- CAPES

Final: Monday, December 5, 11:30 AM - 2:30 PM

Method of Lagrange multipliers. One constraint
Problem: find the maximum/minimum of $f(x, y)$ on the curve C that is defined by the equation $g(x, y)=0$.
Suppose that f is differentiable and C is smooth.
Problem solving strategy:
2. Set up the system of equations using the following template

$$
\left\{\begin{array}{c}
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right) \\
g\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

3. Solve for x_{0} and y_{0} (may have multiple solutions)
4. The largest of the values of f at points $\left(x_{0}, y_{0}\right)$ found above maximizes f on C; the smallest of the values minimizes f on C.

More about step 4
Lagrange multipliers are used to find the critical points. The points of local minima/ maxima are critical points, but critical points are not necessarily local minima / maxima Suppose $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$ are the points that satisfy the Lagrange multipliers equation and $f\left(x_{0}, y_{0}\right)<f\left(x_{1}, y_{1}\right) \leqslant \cdots<f\left(x_{n}, y_{n}\right)$

- if $g(x, y)=0$ is bounded, then $\left(x_{0}, y_{0}\right)$ minimizes f on $g(x, y)=0$, $\left(x_{n}, y_{n}\right)$ maximizes f on $g(x, y)=0$ (we know maximin exist)
- if $g(x, y)=0$ is unbounded, visualize and determine whether f gets larger or smaller as (x, y) goes to infinity along $g(x, y)=0$
- if $g(x, y)=0$ is unbounded but we consider only a bounded part D of it, then check the value of f at the endpoints (boundary) of D

Method of Lagrange multipliers. Cobb-Douglas function
Company's production level is given by the Cobb-Douglas formula $f(x, y)=2.5 x^{0.45} y^{0.55}$, where x is the total number of labor hours, and y represents the total capital input. Suppose 1 unit of labor costs $40 \$$, one unit of capital costs 50 $\$$. Use the Lagrange multipliers method to find the max value of $f(x, y)=2.5 x^{0.45} y^{0.55}$ subject to budgetary constraint of $500000 \$$.

1. Objective function is f, the constraint $40 \cdot x+50 \cdot y=500000$

$$
g(x, y)=40 x+50 y-500000, \quad x \geqslant 0, y \geqslant 0
$$

2. Set up the system of equations:

$$
f_{x}=\underbrace{2.5 \cdot 0.45}_{\frac{9}{8}} \cdot x^{-0.55} y^{0.55}, f_{y}=\underbrace{2.5 \cdot 0.55}_{\frac{11}{8}} \cdot x^{0.45} y^{-0.45}, g_{x}=40, g_{y}=50
$$

Method of Lagrange multipliers. Cobb-Douglas function

$$
\text { (x) }\left\{\begin{array}{c}
f_{x}=\frac{9}{8}\left(\frac{y}{x}\right)^{0.55}=\lambda \cdot 40=\lambda \cdot 9 x \\
\frac{11}{8}\left(\frac{x}{y}\right)^{0.45}=\lambda \cdot 50 \tag{2}
\end{array}\right.
$$

3. Solve the system (*):

$$
\begin{aligned}
& (1) \rightarrow \lambda=\frac{9}{40.8}\left(\frac{y}{x}\right)^{0.55} \\
& \frac{9}{40.8}\left(\frac{y}{x}\right)^{0.55}=\frac{11}{50.8}\left(\frac{x}{y}\right)^{0.45} \rightarrow \frac{11}{8.50}\left(\frac{x}{y}\right)^{0.45}=\lambda \\
& y=\frac{44}{x .} x \quad \frac{40.8}{9} \cdot \frac{11}{56.8}=\frac{44}{45} \\
& \quad x=5625, y=5500
\end{aligned}
$$

Method of Lagrange multipliers. Cobb-Douglas function

$$
x=\frac{45000}{8}=5625 \quad y=\frac{44000}{8}=5500
$$

4. The candidate for the maximum is $(5625,5500)$. Is this a maximum or a minimum?
Consider the function $2.5 x^{0.45} y^{0.55}$ on the budgetary constraint line $40 x+50 y=500000$.
f can only have either one max on this line or one min on this line. Compute the value of f at the endpoints: $x=0, y=10000$ and $y=0, x=12500$

Therefore, the production is maximized with 5625 units of labor and 5500 units of capital.

Lagrange multipliers in \mathbb{R}^{3}. One constraint function Company's production level is given by the Cobb-Douglas function $f(x, y, z)=x^{0.2} y^{0.4} z^{0.4}$, where x is labor, y is capital, z is advertizing. Suppose 1 unit of labor costs $40 \$$, one unit of capital costs $50 \$$, one unit of advertizing costs $100 \$$. Use the Lagrange multipliers method to find the max value of $f(x, y, z)$ subject to budgetary constraints of $500000 \$$.

1. Objective function: $f(x, y, z)=x^{0.2} y^{0.4} z^{0.4}$

Constraint function: $g(x, y, z)=$
2. Compute ∇f and ∇g and set up the equations: $f_{x}=\quad f_{y}=\quad f_{z}=$

Lagrange multipliers in \mathbb{R}^{3}. One constraint function
Objective function: $f(x, y, z)=x^{0.2} y^{0.4} z^{0.4}$
Constraint function: $g(x, y, z)=40 x+50 y+100 z-500000=0$

Equations:
3. Solve the system

4. The candidate for the maximum is Min/max/saddle point?

Lagrange multipliers in \mathbb{R}^{3}. Two constraints
Problem: maximize/minimize $f(x, y, z)$
subject to $g(x, y, z)=0$
$h(x, y, z)=0$
Problem solving strategy:

1. Determine the objective function f and the constraint functions g and h
2. Set up the system of equations
3. Solve the system for x_{0}, y_{0}, z_{0} (may have multiple solutions)
4. Determine which of the points is \max / min (if exists)

Lagrange multipliers in \mathbb{R}^{3}. Two constraints
Example Find the closest point to the origin on the line on intersection of the planes $2 x+y+2 z=9,5 x+5 y+7 z=29$

Find the minimum of $f(x, y, z)=x^{2}+y^{2}+z^{2}$
subject to $2 x+y+2 z=9$

$$
5 x+5 y+7 z=29
$$

1. $f(x, y, z)=x^{2}+y^{2}+z^{2}$,
2. Set up the system of equations:

Lagrange multipliers in \mathbb{R}^{3}. Two constraints
3.

Lagrange multipliers in \mathbb{R}^{3}. Two constraints
4. Min? Max?

Is the set determined by $2 x+y+2 z=9$ and $5 x+5 y+7 z=29$ bounded?

How does $f(x, y, z)=x^{2}+y^{2}+z^{2}$ behave as (x, y, z) tends to infinity along the line?

