MATH 10C: Calculus III (Lecture B00)

mathweb.ucsd.edu/~ynemish/teaching/10c

Today: Method of Lagrange multipliers Next: Review

Week 10:

- Homework 8 due Friday, December 2
- CAPES

Final: Monday, December 5, 11:30 AM - 2:30 PM

Method of Lagrange multipliers. One constraint

Problem: find the maximum/minimum of f(x,y) on the curve C that is defined by the equation g(x,y)=0.

Suppose that f is differentiable and C is smooth.

Problem solving strategy:

- 3. Solve for x. and y. (may have multiple solutions)
- 4. The largest of the values of f at points (xo,yo) found above maximizes f on C; the smallest of the values minimizes f on C.

More about step 4 Lagrange multipliers are used to find the critical points. The points of local minima/ maxima are critical points, but critical points are not necessarily local minima/maxima Suppose (xo, yo),..., (xn, yn) are the points that satisfy the Lagrange multipliers equation and f(xo,yo) < f(x,y,) <-- < f(xn,yo) · if g(x,y)=0 is bounded, then (xo,yo) minimizes f on g(x,y)=0, (xn, yn) maximizes f on q (x,y)=0 (we know max (min exist) • if q(x,y) = 0 is unbounded, visualize and determine whether f gets larger or smaller as (x,y) goes to infinity along g(xy)=0 • if g(x,y)=0 is unbounded but we consider only a bounded part D of it, then check the value of f at the endpoints (boundary) of D

Method of Lagrange multipliers. Cobb-Douglas function Company's production level is given by the Cobb-Douglas

formula $f(x,y) = 2.5 x^{0.45} y^{0.55}$, where x is the total number

of labor hours, and y represents the total capital input.

Suppose 1 unit of labor costs 40\$, one unit of capital costs 50\$. Use the Lagrange multipliers method to find the max value of f(x,y) = 2.5x0.45y0.55 subject to budgetary constraint of 500000\$.

1. Objective function is f, the constraint 40.x +50.y =500000 $g(x,y) = 40x + 50y - 500000 , x \ge 0, y \ge 0$

2. Set up the system of equations: $f_x = 2.5 \cdot 0.45 \cdot x^{-0.55} y^{0.55}$, $f_y = 2.5 \cdot 0.55 \cdot x^{-0.45}$, $g_x = 40$, $g_y = 50$

$$\left(f_{x} = \frac{9}{8} \left(\frac{y}{x}\right)^{0.55} = \lambda \cdot 40 = \lambda \cdot 92$$

$$\frac{11}{8} \left(\frac{2}{9} \right)^{0.45} = \lambda.50$$

$$\frac{8}{8} \left(\frac{2}{9} \right)^{0.45} = 3.50$$

$$\frac{11}{8} \left(\frac{2}{9} \right)^{0.45} = 3.50$$

$$(1) \rightarrow \lambda = \frac{g}{40.8} \left(\frac{y}{x}\right)^{0.55}$$

$$\frac{g}{40.8} \left(\frac{y}{x}\right)^{0.55} = \frac{11}{2} \left(\frac{x}{y}\right)^{0.45}$$

$$\frac{g}{x} = \frac{1}{2} \left(\frac{x}{y}\right)^{0.45}$$

$$\frac{g}{x} = \frac{1}{2} \left(\frac{x}{y}\right)^{0.45}$$

$$\frac{g}{x} = \frac{1}{2} \left(\frac{x}{y}\right)^{0.45}$$

$$\frac{g}{x} = \frac{1}{2} \left(\frac{x}{y}\right)^{0.45}$$

y = 44 x x = 5625, y = 5500

Method of Lagrange multipliers. Cobb-Douglas function $x = \frac{45000}{8} = 5625$ $y = \frac{44000}{8} = 5500$ 4. The candidate for the maximum is (5625, 5500). Is this a maximum or a minimum? Consider the function 2.5x0.45y0.55 on the budgetary constraint line 40x + 50 y = 500000. f can only have either one max on this line or one min on this line. Compute the value of f at the end points: x=0, y=10000 and y=0, x=12500 Therefore, the production is maximized with 5625 units of labor and 5500 units of capital.

Lagrange multipliers in R3. One constraint function

Company's production level is given by the Cobb-Douglas function f(x,y,z) = x°2 y°4 z°4, where x is labor, y is capital, z is advertizing. Suppose 1 unit of labor costs 40\$, one unit of capital costs 50\$, one unit of advertizing costs 100\$. Use the Lagrange multipliers method to find the max value of f(x,y,z) subject to budgetary

constraints of s00000 b.
1. Objective function:
$$f(x_1y_1z) = x^{0.2}y^{0.4}z^{0.4}$$

Constraint function: q(x,y,z)=

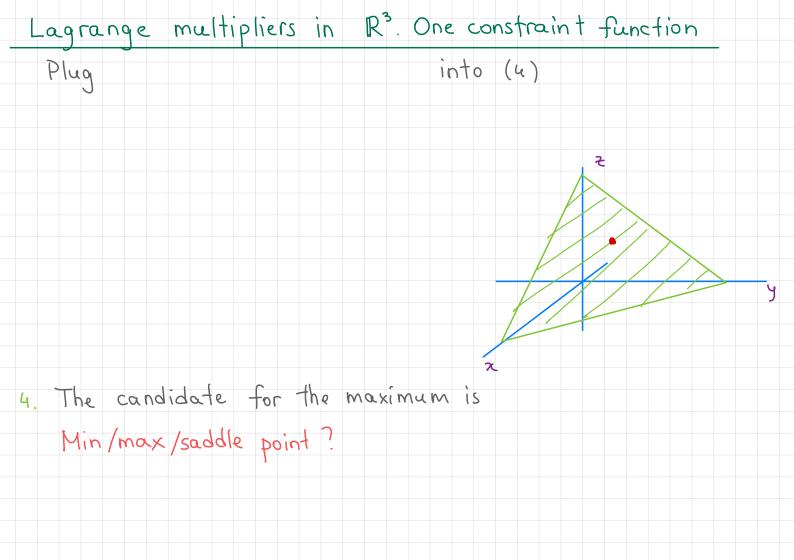
2. Compute of and og and set up the equations: $f_x = f_y = f_z =$

Lagrange multipliers in R3. One constraint function

Objective function: f(x,y,z) = x°2y0.420.4

Constraint function: g(x,y,z) = 40x + 50y + 100z - 500000 = 0

3. Solve the system



Lagrange multipliers in R3. Two constraints Problem: maximize/minimize f(x,y, 2) subject to g(x,y,z)=0 h (x,y, 2) =0 Problem solving strategy: 1. Determine the objective function f and the constraint functions g and h 2. Set up the system of equations 3. Solve the system for xo, yo, zo (may have multiple solutions) 4. Determine which of the points is max/min (if exists)

Lagrange multipliers in R3. Two constraints

Example Find the closest point to the origin on the line on intersection of the planes 2x+y+2z=9, 5x+5y+7z=29

on intersection of the planes
$$2x+y+2z=9$$
, $5x+5y+7z=29$
Find the minimum of $f(x,y,z)=x^2+y^2+z^2$

5x+54+7z=29

subject to
$$2x+y+2z=9$$

1.
$$f(x_1y_1) = x^2 + y^2 + z^2$$

Lagrange multipliers in R3. Two constraints 3.

Lagrange multipliers in R3. Two constraints

4. Min? Max?

How does $f(x,y,z) = x^2 + y^2 + z^2$ behave as (x,y,z) tends to infinity along the line?