MATH 10C: Calculus III (Lecture B00)

mathwebu.ucsd.edu/~ynemish/teaching/10c

Today: Method of Lagrange multipliers Next: Strang 4.8

Week 9:

- Homework 7 due Wednesday, November 23
- Homework 8 due Friday, December 2

Method of Lagrange multipliers. One constraint
Problem: find the maximum/minimum of $f(x, y)$ on the curve C that is defined by the equation $g(x, y)=0$.
Suppose that f is differentiable and C is smooth.
Problem solving strategy:
2. Set up the system of equations using the following template

$$
\left\{\begin{array}{c}
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right) \\
g\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

3. Solve for x_{0} and y_{0} (may have multiple solutions)
4. The largest of the values of f at points $\left(x_{0}, y_{0}\right)$ found above maximizes f on C; the smallest of the values minimizes f on C.

More about step 4
Lagrange multipliers are used to find the critical points. The points of local minima/ maxima are critical points, but critical points are not necessarily local minima / maxima Suppose $\left(x_{0}, y_{0}\right), \ldots,\left(x_{n}, y_{n}\right)$ are the points that satisfy the Lagrange multipliers equation and $f\left(x_{0}, y_{0}\right)<f\left(x_{1}, y_{1}\right) \leqslant \cdots<f\left(x_{n}, y_{n}\right)$

- if $g(x, y)=0$ is bounded, then $\left(x_{0}, y_{0}\right)$ minimizes f on $g(x, y)=0$, $\left(x_{n}, y_{n}\right)$ maximizes f on $g(x, y)=0$ (we know maximin exist)
- if $g(x, y)=0$ is unbounded, visualize and determine whether f gets larger or smaller as (x, y) goes to infinity along $g(x, y)=0$
- if $g(x, y)=0$ is unbounded but we consider only a bounded part D of it, then check the value of f at the endpoints (boundary) of D

Step 4 of the last example
Example Use the method of Largange multipliers to find the minimum value of $f(x, y)=x^{2}+4 y^{2}-2 x+8 y$ subject to the constraint $x+2 y=7$.
Steps 1-3: Point $(5,1)$ is the only solution to the Lagrange multipliers equation.
Step 4: What is the minimum of $f(x, y)$ on $g(x, y)=0$?
Is $x+2 y=7$ bounded? No
If (x, y) goes to infinity along $g(x, y)=0$ in any direction $|x|$ and $|y|$ become infinitely large,
so f tends to $+\infty$ in k direction and in direction, $(5,1)$ is a unique critical point, $f(5,1)=27$. Conslusion: $f(5,1)=27$ is the minimum

Method of Lagrange multipliers
Example Maximize $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ subject to $x^{2}+y^{2}=1$.

1. Maximize $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ subject to $g(x, y)=x^{2}+y^{2}-1$
2. Set up the system of equations

$$
\begin{array}{ll}
f_{x}=3 x^{2}+2 y^{2}-1, & g x=2 x \\
f_{y}=4 x y, & g_{y}=2 y
\end{array}
$$

$$
\left\{\begin{array}{l}
3 x^{2}+2 y^{2}-1=\lambda \cdot 2 x \\
4 x y=\lambda 2 y \\
x^{2}+y^{2}=1
\end{array}\right.
$$

3. From (2): either $y=0$ or (divide by y) $\lambda=2 x$ If $y=0$: from (3) $x= \pm 1$
If $y \neq 0, \lambda=2 x$: use (3) in (1) $x^{2}+2 \widetilde{\left(x^{2}+y^{2}\right)}-1=\lambda \cdot 2 x, x^{2}+1=2 \lambda x$ then use $\lambda=2 x: x^{2}+1=2 \cdot(2 x) \cdot x, \quad x^{2}+1=4 x^{2}, x^{2}=\frac{1}{3}, x= \pm \sqrt{\frac{1}{3}}$
From (3) $\frac{1}{3}+y^{2}=1, y^{2}=\frac{2}{3}, y= \pm \sqrt{\frac{2}{3}}$
4. Compute $f(1,0), f(-1,0), f\left(\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right), f\left(\frac{1}{\sqrt{3}},-\frac{2}{3}\right), f\left(-\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right), f\left(-\frac{1}{\sqrt{3}},-\sqrt{\frac{2}{3}}\right)$

Method of Lagrange multipliers. Cobb-Douglas function
Company's production level is given by the Cobb-Douglas formula $f(x, y)=2.5 x^{0.45} y^{0.55}$, where x is the total number of labor hours, and y represents the total capital input. Suppose 1 unit of labor costs $40 \$$, one unit of capital costs 50 $\$$. Use the Lagrange multipliers method to find the max value of $f(x, y)=2.5 x^{0.45} y^{0.55}$ subject to budgetary constraint of $500000 \$$.

1. Objective function is f, the constraint $40 \cdot x+50 \cdot y=500000$

$$
g(x, y)=40 x+50 y-500000, \quad x \geqslant 0, y \geqslant 0
$$

2. Set up the system of equations:

$$
f_{x}=\underbrace{2.5 \cdot 0.45}_{\frac{9}{8}} \cdot x^{-0.55} y^{0.55}, f_{y}=\underbrace{2.5 \cdot 0.55}_{\frac{11}{8}} \cdot x^{0.45} y^{-0.45}, g_{x}=40, g_{y}=50
$$

Method of Lagrange multipliers. Cobb-Douglas function

$$
\text { (x) }\left\{\begin{array}{c}
f_{x}=\frac{9}{8}\left(\frac{y}{x}\right)^{0.55}=\lambda \cdot 40=\lambda \cdot 9 x \\
\frac{11}{8}\left(\frac{x}{y}\right)^{0.45}=\lambda \cdot 50 \tag{2}
\end{array}\right.
$$

3. Solve the system (*):

$$
\begin{aligned}
& (1) \rightarrow \lambda=\frac{9}{40.8}\left(\frac{y}{x}\right)^{0.55} \\
& \frac{9}{40.8}\left(\frac{y}{x}\right)^{0.55}=\frac{11}{50.8}\left(\frac{x}{y}\right)^{0.45} \rightarrow \frac{11}{8.50}\left(\frac{x}{y}\right)^{0.45}=\lambda \\
& y=\frac{44}{x .} x \quad \frac{40.8}{9} \cdot \frac{11}{56.8}=\frac{44}{45} \\
& \quad x=5625, y=5500
\end{aligned}
$$

