MATH 10C: Calculus III (Lecture B00)

mathwebu.ucsd.edu/~ynemish/teaching/10c

Today: Method of Lagrange multipliers
 Next: Strang 4.8

Week 9:

- Homework 7 due Wednesday, November 23

Finding absolute minima and maxima
Thy . Assume $z=f(x, y)$ is a differentiable function of two variables defined on a closed bounded set D. Then f will attain the absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest values found among the following
(i) The values of f at the critical points of D
(ii) The values of f on the boundary of D

Problem solving strategy for finding absolute max and min:

1. Determine the critical points of f in D
2. Calculate f at each of these critical points
3. Detetermine the max and min values of f on the boundary
4. Choose maximin from the values obtained in steps 2 and 3

Example
Some villagers want to set up a communication tower within 1 km of their village. They want to put it at the highest elevation possible.
Suppose that the landscape around the village is described by $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ with the village center at $(0,0)$. What is the highest point within a (horizontal) distance of 1 km from $(0,0)$?

In other words, we have to maximize $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ on the set of all (x, y) with $x^{2}+y^{2} \leq 1$

Example
The set $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$
 is a unit disk (including the boundary). It is a closed and bounded set.
Its boundary is a unit circle. The maximum value can be inside the disk or on the boundary.
Remark: In general, finding the \max / min value on the boundary may be nontrivial. One can parametrize the boundary as a curve in \mathbb{R}_{2}^{2}, and find the \max / min of $f(x(t), y(t))$, where $(x(t), y(t))$ is the parametrization of the boundary, e.g., $(x(t), y(t))=(\cos (t), \sin (t)), t \in[0,2 \pi]$

Example
Compute the maximum on the boundary

$$
\begin{aligned}
& f(x, y)=x\left(x^{2}+2 y^{2}-1\right) \\
& f(1,0)=0 \quad f(-1,0)=0 \\
& f\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=\frac{1}{\sqrt{3}}\left(\frac{1}{3}+2 \cdot \frac{2}{3}-1\right)=\frac{1}{\sqrt{3}}\left(\frac{5}{3}-1\right)=\frac{2}{3 \sqrt{3}} \\
& f\left(-\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=-\frac{1}{\sqrt{3}}\left(\frac{1}{3}+2 \cdot \frac{2}{3}-1\right)=-\frac{1}{\sqrt{3}} \cdot \frac{2}{3 \sqrt{3}}=-\frac{2}{3 \sqrt{3}}
\end{aligned}
$$

Step 4: Choose the absolute maximum Inside the disk: $f\left(-\frac{1}{\sqrt{3}} 10\right)=\frac{2}{3 \sqrt{3}}$
On the boundary: $f\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=\frac{2}{3 \sqrt{3}}$

$$
\left(-\frac{1}{\sqrt{3}} 10\right)
$$

Conclusion: max value of f on D is $\frac{2}{3 \sqrt{3}}$, attained at $\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)$

Optimization problem with one constraint
Suppose you own a company that manufactures the golf balls. After analyzing the market you developed a model that describes your the company's profit as a function of the number x of golf balls sold and the number y of hours of advertizing

$$
z=f(x, y)=48 x+96 y^{2}-x^{2}-2 x y-9 y^{2}
$$

The maximum number of golf balls that can be produced is 30000, the max number of hours of 25 ' advertizing is 25.
Maximize f on $D=\{(x, y): 0 \leq x \leq 30$,

$$
0 \leq y \leq 25\}
$$

Optimization problem with one constraint
Maximize

$$
\begin{aligned}
& z=f(x, y)=48 x+96 y^{2}-x^{2}-2 x y-9 y^{2} \\
& \text { on } D=\{(x, y): 0 \leq x \leq 30000,0 \leq y \leq 25\}
\end{aligned}
$$

Solution:

- find the critical points inside D and max among these
 points
- find the max on the boundary (parametrize the curve)

What if there is a budgetary constraint?
For example, what if we can only afford the combinations of x and y that satisfy $20 x+4 y \leq 216$? Now the boundary also includes (part of) the curve (line) $20 x+4 y=216$, and we have to maximize f on this boundary curve.

Optimization problem with one constraint
The constraints (like budgetary) are often of the form $g(x, y)=0$ for some function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and one has to maximize $f(x, y)$ on the curve defined by the equation $g(x, y)=0$. This is an example of an optimization problem with one constraint:
maximize $f(x, y) \leftarrow$ objective function subject to the constraint $g(x, y)=0$

We can use the method described in the previous lecture: parametrize the curve, $\langle x(t), y(t)\rangle$, and find the critical points of $f(x(t), y(t))$ This can be simplified/shortened by using the method of Lagrange multipliers.

Method of Lagrange multipliers. One constraint
Problem: find the maximum/minimum of $f(x, y)$ on the curve C that is defined by the equation $g(x, y)=0$.
Suppose that $\left(x_{0}, y_{0}\right)$ is the point of local max or min on C, and suppose that $\langle x(t), y(t)\rangle$ is a parametrization of C such that $x(0)=x_{0}, y(0)=y_{0}$. Then $t=0$ is a point of local max or min of $h(t)=f(x(t), y(t))$, which means that $h^{\prime}(0)=0$ Now use the chain rule

$$
\begin{array}{r}
h^{\prime}(t)=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}=\frac{\partial f}{\partial x}\left(x(t, y(t)) x^{\prime}(t)+\frac{\partial f}{\partial y}\left(x(t), y(t) \cdot y^{\prime}(t)\right.\right. \\
h^{\prime}(0)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) x^{\prime}(0)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) y^{\prime}(0)=\nabla f\left(x_{0}, y_{0}\right) \cdot\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle \\
=0
\end{array}
$$

Method of Lagrange multipliers. One constraint

$$
\nabla f\left(x_{0}, y_{0}\right) \cdot\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle=0
$$

$\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle$ is the tangent vector to the curve C at $t=0$

Conclusion 1: if $\left(x_{0}, y_{0}\right)$ is a point
 of a local extremum of f on C, then $\nabla f\left(x_{0}, y_{0}\right)$ is orthogonal to the tangent vector of C at $\left(x_{0}, y_{0}\right)$

We also know that along the curve $C \quad g(x(t), y(t))=0$, so $\frac{\partial g}{\partial x} \cdot x^{\prime}(t)+\frac{\partial g}{\partial y} \cdot y^{\prime}(t)=0$ for any t (in particular $t=0$).
Thus $($ take $t=0) \quad \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) x^{\prime}(0)+\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) y^{\prime}(0)=0$, ie. $\nabla g\left(x_{0}, y_{0}\right) \cdot$ - $\left.\left\langle x^{\prime}(0), y^{\prime \prime} 0\right\rangle\right\rangle=0$

Method of Lagrange multipliers. One constraint
Conclusion 2: If $\left(x_{0}, y_{0}\right)$ is a local extremum of f on C, then both $\nabla f\left(x_{0}, y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ are orthogonal to $\left\langle x^{\prime}(0), y^{\prime}(0)\right\rangle$.
Main conclusion: $\nabla f\left(x_{0}, y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right)$ are parallel
Thm (Method of Lagrange multipliers. One constraint)
Let f and g be functions of two variables with continuous partial derivatives at every point of some open set containing the smooth curve $g(x, y)=0$. Suppose that f_{1} when restricted to the curve $g(x, y)=0$, has a local extremum at $\left(x_{0}, y_{0}\right)$ and $\nabla g\left(x_{0}, y_{0}\right) \neq 0$. Then there is a number λ called Lagrange multiplier, for which

$$
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)
$$

Method of Lagrange multipliers. One constraint
Problem: find the maximum/minimum of $f(x, y)$ on the curve C that is defined by the equation $g(x, y)=0$.
Suppose that f is differentiable and C is smooth.
Problem solving strategy:
2. Set up the system of equations using the following template

$$
\left\{\begin{array}{c}
\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right) \\
g\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

3. Solve for x_{0} and y_{0} (may have multiple solutions)
4. The largest of the values of f at points $\left(x_{0}, y_{0}\right)$ found above maximizes f on C; the smallest of the values minimizes f on C.

Method of Lagrange multipliers
Example Use the method of Largange multipliers to find the minimum value of $f(x, y)=x^{2}+4 y^{2}-2 x+8 y$ subject to the constraint $x+2 y=7$.

1. Determine the objective function and the constraint function

$$
f(x, y)=x^{2}+4 y^{2}-2 x+8 y, \quad g(x, y)=x+2 y-7
$$

2. Set up the system of equations

$$
\begin{aligned}
& f_{x}=2 x-2, f_{y}=8 y+8, \quad g_{x}=1, \quad g_{y}=2 \\
& \left\{\begin{array}{l}
\langle 2 x-2,8 y+8\rangle=\lambda\langle 1,2\rangle \\
x+2 y=7
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x-2=\lambda \\
8 y+8=2 \lambda \\
x+2 y=7
\end{array}\right.
\end{aligned}
$$

Method of Lagrange multipliers
Example (cont.)
3. Solve the system of equations

Combine (1) and (2)

$$
\left\{\begin{array}{l}
2 x-2=\lambda \tag{1}\\
8 y+8=2 \lambda \\
x+2 y=7
\end{array}\right.
$$

$$
\begin{gather*}
\lambda=2 x-2=4 y+4=\lambda \tag{3}\\
\quad 4=2 y+3 \quad \text { (4) } \tag{4}
\end{gather*}
$$

$$
\begin{aligned}
& 2 y+3+2 y=7 \\
& 4 y=4 \\
& y=1
\end{aligned}
$$

Plug (4) into (3):
Plug $y=1$ back into (u), $x=2 \cdot 1+3=5$.
The point $(5,1)$ is the only solution.
4. Evaluate f at $(5,1): f(5,1)=5^{2}+4 \cdot 1^{2}-2 \cdot 5+8 \cdot 1=27$ Minor max? Take any other point on the curve: $f(7,0)=7^{2}+0-14+8=35$

Method of Lagrange multipliers
Example Maximize $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ subject to $x^{2}+y^{2}=1$.
1.
2.
3.

Method of Lagrange multipliers. Cobb-Douglas function Company's production level is given by the Cobb-Douglas formula $f(x, y)=2.5 x^{0.45} y^{0.55}$, where x is the total number of labor hours, and y represents the total capital input. Suppose I unit of labor costs $40 \$$, one unit of capital costs 50 $\$$. Use the Lagrange multipliers method to find the max value of $f(x, y)=2.5 x^{0.45} y^{0.55}$ subject to budgetary constraint of $500000 \$$.
1.
2. Set up the system of equations:

Method of Lagrange multipliers. Cobb-Douglas function
3. Solve the system (*):

Method of Lagrange multipliers. Cobb-Douglas function

$$
x=\frac{45000}{8}=5625 \quad y=\frac{44000}{8}=5500
$$

4. The candidate for the maximum is $(5625,5500)$. Is this a maximum or a minimum?
Consider the function $2.5 x^{0.45} y^{0.55}$ on the budgetary constraint line $40 x+50 y=500000$.
f can only have either one max on this line or one min on this line. Compute the value of f at any other point, e.g. $x=0, y=10000$.

Therefore, the production is maximized with 5625 units of labor and 5500 units of capital.

