MATH 10C: Calculus III (Lecture B00)

mathwebucsd edu/~ynemish/teaching/10c

Today: Absolute minima/maxima

Next: Strang 4.8

Week 8:

- Homework 7 due Wednesday, November 23

Recall: local and global minima and maxima Def Let $z=f(x, y)$ be a function of two variables. Then f has a local maximum at point $\left(x_{0}, y_{0}\right)$ if
(*) $f\left(x_{0}, y_{0}\right) \geq f(x, y)$ for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the local maximum value. If $(*)$ holds for all (x, y) in the domain of f_{1} we say that f has a global maximum at ($x_{0, y_{0}}$) Function f has a local minimum at point $\left(x_{0}, y_{0}\right)$ if $\left(*^{*}\right) f\left(x_{0}, y_{0}\right) \leq f(x, y)$ for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the local minimum value. If $\left(*^{*}\right)$ holds for all (x, y) in the domain of f_{1} we say that f has a global minimum at ($x_{0}<y_{0}$) Local minima and local maxima are called local extrema.

Absolute (global) maxima and minima
Finding global minima/maxima for functions of one variable on a closed interval:

- find critical points
- check the critical values
- evaluate function at the endpoints of the interval.

We generalize this strategy to fuctions of two (or more) variables defined on a closed bounded set.
A set is called bounded if all the points of the set are
A set is called closed if it contains
(A point P_{0} is called a boundary point of a set S if any disk around Po contains points both inside and outside S)

Theorem. A continuous function f on a closed bounded set D attains an absolute maximum value at some point in D and an absolute minimum value at some point in D.

Finding absolute minima and maxima
Thy . Assume $z=f(x, y)$ is a differentiable function of two variables defined on a closed bounded set D. Then f will attain the absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest values found among the following
(i) The values of f
(ii) The values of f

Problem solving strategy for finding absolute max and min:

1. Determine the critical points of f in D
2. Calculate f at each of these critical points
3. Detetermine the max and min values of f on the boundary
4. Choose maximin from the values obtained in steps 2 and 3

Example
Some villagers want to set up a communication tower within 1 km of their village. They want to put it at the highest elevation possible.
Suppose that the landscape around the village is described by $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ with the village center at $(0,0)$. What is the highest point within a (horizontal) distance of 1 km from $(0,0)$?

In other words, we have to

Example
The set $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$
 is a unit disk (including the boundary). It is a closed and bounded set.
Its boundary is a unit circle. The maximum value can be inside the disk or on the boundary.
Remark: In general, finding the max/min value on the boundary may be nontrivial. One can
in \mathbb{R}^{2}, and find the \max / min of , where is the parametrization of the boundary, e.g.,

Example
Step 1: Determine the critical points inside D

$$
\begin{aligned}
& \quad f(x, y)=x\left(x^{2}+2 y^{2}-1\right) \\
& f_{x}= \\
& f_{y}=
\end{aligned}
$$

Find the critical points by solving

Example
Check which points are in $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

Step 2: Evaluate f at critical points

$$
f(x, y)=x\left(x^{2}+2 y^{2}-1\right)
$$

Example
Step 3 : Find the max value on the boundary
Parametrize the boundary

Each point on the boundary (unit circle) can be written as
so the values of f on the boundary are

We have to fint the maximum of

Example
Maximizing $\cos (t) \sin ^{2}(t)$:
Find the critical points

Critical points are points that satisfy

Example
Compute the maximum on the boundary

$$
\begin{aligned}
& \quad f(x, y)=x\left(x^{2}+2 y^{2}-1\right) \\
& f(1,0)=\quad f(-1,0)= \\
& f\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)= \\
& f\left(-\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=
\end{aligned}
$$

Step 4: Choose the absolute maximum Inside the disk:

On the boundary:
Conclusion: max value of f on D is, achieved at

