MATH 10C: Calculus III (Lecture B00)

mathwebucsd edu/~ynemish/teaching/10c

Today: Absolute minima/maxima

Next: Strang 4.8

Week 8:

- Homework 7 due Wednesday, November 23

Recall: local and global minima and maxima Def Let $z=f(x, y)$ be a function of two variables. Then f has a local maximum at point $\left(x_{0}, y_{0}\right)$ if
(*) $f\left(x_{0}, y_{0}\right) \geq f(x, y)$ for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the local maximum value. If $(*)$ holds for all (x, y) in the domain of f_{1} we say that f has a global maximum at ($x_{0, y_{0}}$) Function f has a local minimum at point $\left(x_{0}, y_{0}\right)$ if $\left(*^{*}\right) f\left(x_{0}, y_{0}\right) \leq f(x, y)$ for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the local minimum value. If $\left(*^{*}\right)$ holds for all (x, y) in the domain of f_{1} we say that f has a global minimum at ($x_{0}<y_{0}$) Local minima and local maxima are called local extrema.

Absolute (global) maxima and minima
Finding global minima/maxima for functions of one variable on a closed interval:

- find critical points
- check the critical values
- evaluate function at the endpoints of the interval.

We generalize this strategy to fuctions of two (or more) variables defined on a closed bounded set.
A set is called bounded if all the points of the set are contained in a disk (ball) of finite radius
A set is called closed if it contains all its boundary points (A point P_{0} is called a boundary point of a set S if any disk around Po contains points both inside and outside S)

Theorem. A continuous function f on a closed bounded set D attains an absolute maximum value at some point in D and an absolute minimum value at some point in D.

Finding absolute minima and maxima
Thy . Assume $z=f(x, y)$ is a differentiable function of two variables defined on a closed bounded set D. Then f will attain the absolute maximum value and the absolute minimum value, which are, respectively, the largest and smallest values found among the following
(i) The values of f at the critical points in D
(ii) The values of f on the bounbary of D

Problem solving strategy for finding absolute max and min:

1. Determine the critical points of f in D
2. Calculate f at each of these critical points
3. Detetermine the max and min values of f on the boundary
4. Choose maximin from the values obtained in steps 2 and 3

Example
Some villagers want to set up a communication tower within 1 km of their village. They want to put it at the highest elevation possible.
Suppose that the landscape around the village is described by $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ with the village center at $(0,0)$. What is the highest point within a (horizontal) distance of 1 km from $(0,0)$?

In other words, we have to maximize $f(x, y)=x\left(x^{2}+2 y^{2}-1\right)$ on the set of all (x, y) with $x^{2}+y^{2} \leq 1$

Example
The set $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$
 is a unit disk (including the boundary). It is a closed and bounded set.
Its boundary is a unit circle. The maximum value can be inside the disk or on the boundary.
Remark: In general, finding the \max / min value on the boundary may be nontrivial. One can parametrize The boundary as a curve in \mathbb{R}^{2}, and find the maximin of $f(x(t), y(t))$, where $(x(t), y(t))$ is the parametrization of the boundary, e.g., $(x(t), y(t))=(\cos (t), \sin (t)) \quad 0 \leq t \leq 2 \pi$

Example
Step 1: Determine the critical points inside D

$$
\begin{aligned}
& \quad f(x, y)=x\left(x^{2}+2 y^{2}-1\right) \\
& f_{x}=1 \cdot\left(x^{2}+2 y^{2}-1\right)+x \cdot 2 x=3 x^{2}+2 y^{2}-1 \\
& f_{y}=4 x y
\end{aligned}
$$

Find the critical points by solving

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
3 x^{2}+2 y^{2}-1=0 \\
4 x y=0
\end{array} \rightarrow \quad x=0 \quad \text { or } \quad y=0\right.
\end{array}\right\} \begin{aligned}
& \text { If } x=0, \quad 2 y^{2}-1=0, \quad y^{2}=\frac{1}{2}, \quad y= \pm \frac{1}{\sqrt{2}}
\end{aligned} \begin{aligned}
& \text { If } y=0, \quad 3 x^{2}-1=0, \quad x^{2}=\frac{1}{3}, \quad x= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Four possible critical points: $\left(0, \frac{1}{\sqrt{2}}\right),\left(0,-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{3}}, 0\right),\left(-\frac{1}{\sqrt{3}}, 0\right)$

Example
Check which points are in $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

$$
\begin{aligned}
& \left(0, \frac{1}{\sqrt{2}}\right),\left(0,-\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{3}}, 0\right),\left(-\frac{1}{\sqrt{3}}, 0\right) \\
& 0^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}=0+\frac{1}{2}=\frac{1}{2} \leq 1,0^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2} \leq 1,\left(\frac{1}{\sqrt{3}}\right)^{2}+0^{2} \leq 1,\left(-\frac{1}{\sqrt{3}}\right)^{2}+0^{2} \leq 1
\end{aligned}
$$

All four points are inside the unit disk D

Step 2: Evaluate f at critical points

$$
\begin{aligned}
& f(x, y)=x\left(x^{2}+2 y^{2}-1\right) \\
& f\left(0, \frac{1}{\sqrt{2}}\right)=0 \cdot\left(0^{2}+2 \cdot\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)=0 \quad f\left(0,-\frac{1}{\sqrt{2}}\right)=0 \\
& f\left(\frac{1}{\sqrt{3}}, 0\right)=\frac{1}{\sqrt{3}}\left(\left(\frac{1}{\sqrt{3}}\right)^{2}+2 \cdot 0-1\right)=\frac{1}{\sqrt{3}}\left(\frac{1}{3}-1\right)=-\frac{2}{3 \sqrt{3}} \\
& f\left(-\frac{1}{\sqrt{3}}, 0\right)=-\frac{1}{\sqrt{3}}\left(\frac{1}{3}-1\right)=\frac{2}{3 \sqrt{3}}
\end{aligned}
$$

Example
Step 3 : Find the max value on the boundary
Parametrize the boundary

$$
x(t)=\cos (t), \quad y(t)=\sin (t), \quad 0 \leqslant t \leqslant 2 \pi
$$

Each point on the boundary (unit circle) can be written as $(\cos (t), \sin (t))$ for some $0 \leq t \leq 2 \pi$ so the values of f on the boundary are

$$
\begin{aligned}
f(\cos (t), \sin (t)) & =\cos (t)\left(\cos ^{2}(t)+2 \sin ^{2}(t)-1\right) \\
& =\cos (t)\left(\cos ^{2}(t)+\sin ^{2}(t)+\sin ^{2}(t)-1\right) \\
& =\cos t \sin ^{2}(t)
\end{aligned}
$$

We have to find the maximum of $\cos (t) \sin ^{2}(t)$ for $0 \leqslant t \leqslant 2 \pi$

Example
Maximizing $\cos (t) \sin ^{2}(t)$:
Find the critical points

$$
\begin{aligned}
\left(\cos (t) \sin ^{2}(t)\right)^{\prime} & =-\sin (t) \sin ^{2}(t)+\cos (t) 2 \sin (t) \cos (t) \\
& =\sin (t)\left(2 \cos ^{2}(t)-\sin ^{2}(t)\right) \\
& =\sin (t)\left(3 \cos ^{2}(t)-1\right)=0
\end{aligned}
$$

Critical points are points that satisfy

$$
\begin{array}{lc}
y(t)=\sin (t)=0 & \text { or } \\
x^{2}+y^{2}=1 & 3 \cos ^{2}(t)-1=0 \\
x^{2}=1, x= \pm 1 & x(t)=\cos ^{2}(t)=\frac{1}{3}, x= \pm \frac{1}{\sqrt{3}} \\
(1,0),(-1,0) & y= \pm \sqrt{\frac{2}{3}}
\end{array}
$$

Example
Compute the maximum on the boundary

$$
\begin{aligned}
& f(x, y)=x\left(x^{2}+2 y^{2}-1\right) \\
& f(1,0)=0 \quad f(-1,0)=0 \\
& f\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=\frac{2}{3 \sqrt{3}} \\
& f\left(-\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=-\frac{2}{3 \sqrt{3}}
\end{aligned}
$$

Step 4: Choose the absolute maximum Inside the disk: $\left(-\frac{1}{\sqrt{3}}, 0\right), f\left(-\frac{1}{\sqrt{3}}, 0\right)=\frac{2}{3 \sqrt{3}}$
On the boundary: $f\left(\frac{1}{\sqrt{3}}, \pm \sqrt{\frac{2}{3}}\right)=\frac{2}{3 \sqrt{3}} \quad\left(-\frac{1}{\sqrt{3}} 10\right)$
Conclusion: max value of f on D is $\frac{2}{3 \sqrt{3}}$, achieved at $\left(\frac{1}{\sqrt{3}}, \pm \frac{2}{3}\right)$

