MATH 10C: Calculus III (Lecture B00)

mathwebucsd.edu/~ynemish/teaching/10c

Today: Local minima/maxima

Next: Strang 4.7

Week 8:

- Midterm 2: Wednesday, November 16 (lectures 10-19)

Last time
Def. Let $z=f(x, y)$ be a function of two variables defined at $\left(x_{0}, y_{0}\right)$. Then $\left(x_{0}, y_{0}\right)$ is called a critical point of f if either

- $f_{x}\left(x_{0}, y_{0}\right)=0, f_{y}\left(x_{0}, y_{0}\right)=0$ (i.e. $\nabla f\left(x_{0}, y_{0}\right)=\overrightarrow{0}$); or
- $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ does not exist

Last time
Def Let $z=f(x, y)$ be a function of two variables. Then f has a local maximum at point $\left(x_{0}, y_{0}\right)$ if
(*) $f\left(x_{0}, y_{0}\right) \geq f(x, y)$ for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the local maximum value. If $(*)$ holds for all (x, y) in the domain of f_{1} we say that f has global maximum at $\left(x_{0}, y_{0}\right)$. Function f has a local minimum at point $\left(x_{0}, y_{0}\right)$ if (**) $f\left(x_{0}, y_{0}\right) \leqslant f(x, y)$ for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the local minimum value. If $\left(x^{*}\right)$ holds for all (x, y) in the domain of f_{1} we say that f has global minimum at $\left(x_{0}, y_{0}\right)$. Local minima and local maxima are called local extrema.

Last time
The 4.16 Let $z=f(x, y)$ be a function of two variables. Suppose f_{x} and f_{y} each exist at $\left(x_{0}, y_{0}\right)$. If f has a local extremum at $\left(x_{0}, y_{0}\right)$, then $\left(x_{0}, y_{0}\right)$ is a critical point of f (i.e. $\left.\nabla f\left(x_{0}, y_{0}\right)=0\right)$.
Example At the very top of a mountain the ground is flat. If there was slope in some direction, then you could go higher. Similarly, at the lowest point of a crater the ground is also flat $(\nabla f=0)$.
But the fact that the ground is flat $\left(\nabla f\left(x_{0}, y_{0}\right)=0\right)$ does not necessarily mean that f has a local extremum at $\left(x_{0}, y_{0}\right)$, it may be a saddle point.

Saddle points
Def. Let $z=f(x, y)$ be a function of two variables.
We say that $\left(x_{0}, y_{0}\right)$ is a

- but f

Level curves around the saddle point have this shape

The second derivative test
Thm 4.17 (Second derivative test)
Suppose that $f(x, y)$ is a function of two variables for which the first-and second-order partial derivatives are continuous around $\left(x_{0}, y_{0}\right)$. Suppose and

- Define
(i) If and , then f has a
(ii) If and , then f has a
(iii) If, then f has a
(iv) If , then

Problem solving strategy
Problem:
Let $z=f(x, y)$ be a function of two variables for which the first- and second-ordered partial derivatives are continuous. Find local extrema.
Solution:

1. Determine critical points $\left(x_{0}, y_{0}\right)$ where $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0$ Discard any points where f_{x} or f_{y} does not exist.
2. Caclulate D for each critical point
3. Apply the second derivative test to determine if $\left(x_{0}, y_{0}\right)$ is a local minimum, local maximum or a saddle point.

Local extrema. Examples
Find the critical points for the following function and use the second derivative test to find the local extrema

$$
f(x, y)=x^{3}+2 x y-2 x-4 y
$$

Step 1: Compute ∇f and find the critical points

$$
\begin{aligned}
& f_{x}= \\
& f_{y}=
\end{aligned}
$$

f_{x} and f_{y} are
Find (x, y) such that
$\{$
Function f has

Local extrema. Examples
Step 2: Compute
Start by computing $f_{x x}, f_{x y}, f_{y} x, f_{y y}$ at $(2,-5)$

$$
\begin{array}{ll}
f_{x x}=\frac{\partial}{\partial x} f_{x}=\frac{\partial}{\partial x} & , f_{x x}(2,-5)= \\
f_{x y}=\frac{\partial}{\partial y} f_{x}=\frac{\partial}{\partial y} & , f_{x y}(2,-5)= \\
f_{y y}=\frac{\partial}{\partial y} f_{y}=\frac{\partial}{\partial y} & f_{y y}(2,-5)= \\
D= &
\end{array}
$$

Step 3: Second derivative test.

Local extrema. Examples
Find the critical points for the following function and use the second derivative test to find the local extrema

$$
f(x, y)=x y e^{-\frac{x^{2}+y^{2}}{2}}
$$

Step 1

$$
\begin{aligned}
& f_{x}= \\
& f_{y}=
\end{aligned}
$$

f_{x} and f_{y} are defined for all (x, y)

$$
\left\{\begin{array}{l}
f_{x}(x, y)=0 \\
f_{y}(x, y)=0
\end{array} \Leftrightarrow\right.
$$

Critical points:

Local extrema. Examples
Step 2 Second order partial derivatives

$$
f_{x x}=\frac{\partial}{\partial x}\left[y\left(1-x^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}\right]=
$$

$$
\begin{aligned}
& f_{y y}= \\
& f_{x y}=
\end{aligned}
$$

Local extrema. Examples

$$
\begin{aligned}
f_{x x}=-x y\left(3-x^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}} & f_{x y}
\end{aligned}=\left(1-x^{2}\right)\left(1-y^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}, ~\left(3-y^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}
$$

Consider the critical point (1,1)

$$
\begin{aligned}
& f_{x x}(1,1)= \\
& f_{x y}(1,1)= \\
& f_{y y}(1,1)=
\end{aligned}
$$

$$
D=
$$

Local extrema. Examples

$$
\begin{aligned}
f_{x x}=-x y\left(3-x^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}} & f_{x y}
\end{aligned}=\left(1-x^{2}\right)\left(1-y^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}, ~\left(3-y^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}
$$

Consider the critical point $(1,-1)$

$$
\begin{aligned}
& f_{x x}(1,1)= \\
& f_{x y}(1,1)= \\
& f_{y y}(1,1)=
\end{aligned}
$$

$$
D=
$$

Local extrema. Examples

$$
\begin{aligned}
f_{x x}=-x y\left(3-x^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}} & f_{x y}
\end{aligned}=\left(1-x^{2}\right)\left(1-y^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}, ~\left(3-y^{2}\right) e^{-\frac{x^{2}+y^{2}}{2}}
$$

Consider the critical point $(0,0)$

$$
\begin{aligned}
& f_{x x}(0,0)= \\
& f_{x y}(0,0)= \\
& f_{y y}(0,0)=
\end{aligned}
$$

$$
D=
$$

