MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: Local minima/maxima

Next: Strang 4.7

Week 7:

- homework 6 (due Friday, November 11)
- Midterm 2: Wednesday, November 16 (lectures 10-19)

Maxima and minima of functions of one variable Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of one variable.
The point $x_{0} \in \mathbb{R}$ is called a critical point of f if either $f^{\prime}\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)$ does not exist. Any local maximum or local minimum of f is a critical point.

Critical points of functions of two variables
Finding local minima/maxima in one dimension:
(i) identify critical points; (ii) determine which critical points are local minima/maxima.
We will extend this to functions of two variables. First, introduce the notion of a critical point for functions of two variables.
Def. Let $z=f(x, y)$ be a function of two variables defined at $\left(x_{0}, y_{0}\right)$. Then $\left(x_{0}, y_{0}\right)$ is called a if either

Critical points. Example
Find the critical points of the function

$$
f(x, y)=\sqrt{4 y^{2}-9 x^{2}+24 y+36 x+36}
$$

Start by computing f_{x} and f_{y} and finding (x, y) s.t. $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$ simultaneously

$$
\begin{aligned}
& f_{x}(x, y)= \\
& f_{y}(x, y)=
\end{aligned}
$$

Next, find all (x, y) for which f_{x} or $f y$ does not exist: all $x \cdot y$ st.

Critical points. Example (cont.)
Therefore, and
are possible critical points. We have to check that these points are in the domain of definition of f. The domain of definition of f consists of all (x, y) st.

Clearly, all points satisfying (*)
Also, point $(2,-3)$
Therefore, the set of the critical points of f consists of and all points of the hyperbola

Critical points. Example (cont.)
Here is the plot of the domain of f and the critical points of f

Local minimum/maximum
Def Let $z=f(x, y)$ be a function of two variables. Then f has
for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called

If (*) holds for all (x, y) in the domain of f_{1} we say that f has
Function f has a
for all points (x, y) within some disk centered at $\left(x_{0}, y_{0}\right)$. The number $f\left(x_{0}, y_{0}\right)$ is called the

- If (**) holds for all (x, y) in the domain of f_{1} we say that f has Local minima and local maxima are called

Local extrema and critical points
The 4.16 Let $z=f(x, y)$ be a function of two variables.
Suppose

Example At the very top of a mountain the ground is flat. If there was slope in some direction, then you could go higher. Similarly, at the lowest point of a crater the ground is also flat $(\nabla f=0)$.
But the fact that the ground is flat $\left(\nabla f\left(x_{0}, y_{0}\right)=0\right)$ that f has a local extremum at $\left(x_{0}, y_{0}\right)$

Saddle points
Def. Let $z=f(x, y)$ be a function of two variables.
We say that $\left(x_{0}, y_{0}\right)$ is a

- but f

Level curves around the saddle point have this shape

The second derivative test
Thm 4.17 (Second derivative test)
Suppose that $f(x, y)$ is a function of two variables for which the first-and second-order partial derivatives are continuous around $\left(x_{0}, y_{0}\right)$. Suppose and

- Define
(i) If and , then f has a
(ii) If and , then f has a
(iii) If, then f has a
(iv) If , then

Problem solving strategy
Problem:
Let $z=f(x, y)$ be a function of two variables for which the first- and second-ordered partial derivatives are continuous. Find local extrema.
Solution:

1. Determine critical points $\left(x_{0}, y_{0}\right)$ where $f_{x}\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)=0$ Discard any points where f_{x} or f_{y} does not exist.
2. Caclulate D for each critical point
3. Apply the second derivative test to determine if $\left(x_{0}, y_{0}\right)$ is a local minimum, local maximum or a saddle point.
