MATH 10C: Calculus III (Lecture B00)

mathweb.ucsd.edu/~ynemish/teaching/10c

Today: Local minima/maxima

Next: Strang 4.7

Week 7:

homework 6 (due Friday, November 11)

Midterm 2: Wednesday, November 16 (lectures 10-19)

Maxima and minima of functions of one variable Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function of one variable. The point x. E R is called a critical point of f if either f'(xo) = 0 or f'(xo) does not exist. Any local maximum or local minimum of f is a critical point.

Critical points of functions of two variables

Finding local minima/maxima in one dimension:

(i) identify critical points; (ii) determine which

critical points are local minima/maxima.

We will extend this to functions of two variables. First,

introduce the notion of a critical point for functions

of two variables.

Def. Let z=f(x,y) be a function of two variables

defined at (xo, yo). Then (xo, yo) is called a

if either

Critical points. Example

Find the critical points of the function

$$f(x,y) = \sqrt{4y^2 - 9x^2 + 24y} + 36x + 36$$

Start by computing fx and fy and finding (x, y) s.t.

filx, y)= and fy (x, y)= o simultaneously

Next, find all (x,y) for which fx or fy does not exist:

all any s.t.

Critical points. Example (cont.)

Therefore, and

are possible critical points. We have to check that

these points are in the domain of definition of f.

The domain of definition of f consists of all (2.9) s.t.

Critical points. Example (cont.)

Here is the plot of the domain of f and the

'a

51

critical points of f

Local extrema and critical points

Thm 4.16 Let z=f(x,y) be a function of two variables,

Suppose

Example At the very top of a mountain the ground is flat. If there was slope in some direction, then you could go higher. Similarly, at the lowest point of a crater the ground is also flat ($\nabla f = 0$). But the fact that the ground is flat ($\nabla f(x_0, y_0) = 0$) that f has a local

extremum at (xo, yo)

Thm 4.17 (Second derivative test)

Suppose that f(x,y) is a function of two variables for which

the first-and second-order partial derivatives are continuous

around (20, yo). Suppose and . Define

(i) If and , then f has a (ii) If and , then f has a

(iii) If , then f has a

(iv) If , then

Problem solving strategy

Problem:

Let z=f(x,y) be a function of two variables for which the

first- and second-ordered partial derivatives are continuous.

Find local extrema.

Solution:

1. Determine critical points (xo,yo) where fx (xo,yo) = fy (xo,yo) = 0

Discard any points where fx or fy does not exist.

2. Caclulate D for each critical point

3. Apply the Second derivative test to determine if (xo, yo) is a local minimum, local maximum or a saddle point.