MATH 10C: Calculus III (Lecture B00)

mathwebucucsd.edu/~ynemish/teaching/10c

Today: Vectors in the plane

Next: Strang 2.2

Week 1:

- check the course website
- homework 1 (due Friday, September 30)
- join Piazza, Edfinity

Definition of a vector
We use scalars (numbers) to describe various quantities. Example: time, distance, mass, speed are represented by a single number (a scalar)

Certain quantities cannot be described by scalars. Think about the movement of an airplane. We need to know
the direction of the movement of the airplane the speed of the airplane

Definition of a vector
Forces, displacements, velocity are described by vectors.
Airplane flies NE at 600 mph (relative to the air)
Wind blows SE at 60 mph

How fast does the airplane fly relative to the ground?
 In what direction?

Initial and terminal points. Magnitude
A vector in a plane is represented by a directed line segment from the to the

The length of the line segment represents the
Notation: vectors are denoted the magnitude of the vector is denoted

Zero vector. Equivalent vectors
A vector with an initial and terminal points that are the same is called

We say that \vec{v} and \vec{w} are if they have the same direction and magnitude
We treat equivalent vectors as equal even if they have different initial points.

$\vec{a} \quad \vec{b}$
$\vec{a} \quad \vec{c}$
$\vec{a} \quad \vec{d}$
$\vec{a} \quad \vec{e}$

Scalar multiplication
Let \vec{v} be a vector and k be a real number Then $k \vec{v}$, called
is a vector such that

$$
\|k \vec{v}\|=
$$

$k \vec{v}$ has the
as \vec{v} if
$k \vec{V}$ has the direction
to the direction of \vec{v} if
Example If $k=0$ or $\vec{v}=0$, then

Vector addition
Let \vec{v} and \vec{w} be two vectors. Place the initial point of \vec{w} at the terminal point of \vec{v}. Then the vector with initial point at the initial point of \vec{v} and the terminal point at the terminal point of \vec{W} is called the , and is denoted

Example

$$
\xrightarrow[\vec{w}]{ }
$$

Notice that

Combining vectors
We know how to define (geometrically) $k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}$ or $k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}+k_{3} \vec{v}_{3} \ldots$

Example

- $\vec{w}-\vec{v}$
- $2 \vec{v}+\frac{1}{2} \vec{w}$

Vector components
It is easier to work with vectors in a coordinate system. Since the location of the initial vector does not matter, let's place all vectors in the plane so that their initial points

We call such vectors
 , and they can be described by the

Vector components
Def. The vector with initial point $(0,0)$ and the terminal point (x, y) can be written in component form as

The scalars x and y are called the

$$
\begin{aligned}
& \vec{a}= \\
& \vec{b}= \\
& \vec{d}= \\
& \vec{e}=
\end{aligned}
$$

Vector components
If the vector is not in standard position, but we know the coordinates of its initial and terminal points, then we can find the vectors coordinates using the following rule:

Magnitude of the vector
Magnitude of the vector is the distance between its initial and terminal points.
If $P=\left(x_{i}, y_{i}\right), Q=\left(x_{t}, y_{t}\right)$, then
If $\vec{v}=\langle x, y\rangle$, then

Example - $P=(2,-3), Q=(4,0)$

- $\vec{a}=\langle 2,3\rangle$

Vector operations in component form
Def. Let $\vec{v}=\left\langle x_{1}, y_{1}\right\rangle, \vec{w}=\left\langle x_{2}, y_{2}\right\rangle, k \in \mathbb{R}$.

Then $\cdot k \vec{v}=$

- $\vec{v}+\vec{w}=$
(scalar multiplication) (vector addition)

Example

- $\vec{v}+\vec{w}=$
- $\vec{w}-\vec{v}=$
- $2 \vec{v}+\frac{1}{2} \vec{w}=$

