# MATH 10C: Calculus III (Lecture B00) 

## mathwebucsd.edu/~ynemish/teaching/10c

## Today: Directional derivative. Gradient Next: Strang 4.7

Week 7:

- homework 6 (due Friday, November 11)

Directional derivative
Consider a function of two variables $f(x, y)$.
Then the partial derivatives $f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x, y_{0}\right)$ represent the rate of change of function $f$ at point $\left(x_{0}, y_{0}\right)$ in the $x$-direction and in the $y$-direction correspondingly.
Q: What if we want to know the rate of change in another direction?


Directional derivative
Definition We call

Q: How to compute $\operatorname{Du} f\left(x_{0}, y_{0}\right)$ ?

Example
Let $f(x, y)=x^{2}-x y+3 y^{2}$. Find the directional derivative of $f$ in the direction $\langle 3,-4\rangle$ (at an arbitrary point $(x, y))$.

Step 1:

Step 2:

Step 3:

Gradient
If $f(x, y)$ is differentiable, $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle,\|\vec{u}\|=1$, then

$$
\begin{equation*}
D_{\vec{u}} f(x, y)=f_{x}(x, y) \cdot u_{1}+f_{y}(x, y) \cdot u_{2} \tag{*}
\end{equation*}
$$

Def. Let $f(x, y)$ be a function of two variables such that $f_{x}$ and $f_{y}$ exist. Then the vector

We can rewrite (*) as

Examples

1. $f(x, y)=x^{2}-x y+3 y^{2}$. Find $\nabla f(x, y)$.
2. $f(x, y)=\sin (3 x) \cos (3 y)$. Find $\nabla f(x, y)$

Gradient as the direction of the steepest ascent Consider a function $f(x, y)$ and a point $\left(x_{0}, y_{0}\right)$. We know that $D_{\vec{u}} f\left(x_{0}, y_{0}\right)$ gives the rate of change of function $f$ at point $\left(x_{0}, y_{0}\right)$ in the direction $\vec{u}$.
Q: For which $\vec{u}$ is $\operatorname{Du} f\left(x_{0}, y_{0}\right)$ the greatest? In other words, which direction gives the greatest rate of change?

Suppose that $f$ is differentiable.

Gradient as the direction of the steepest ascent

Recall that $-1 \leq \cos \varphi \leq 1$,

Example
Find the direction for which the directional derivative of $f(x, y)=2 x^{2}-x y+3 y^{2}$ at $(-2,3)$ is a maximum. What is the maximum value.

The direction of the most rapid increase:
The rate of change in this direction is

