MATH 10C: Calculus III (Lecture B00)

mathwebucsd.edu/~ynemish/teaching/10c

Today: Differentiability. Chain rule

Next: Strang 4.5

Week 6:

- homework 5 (due Friday, November 4, 11:59 PM)

Differentiability
Functions of one variable: if a function is differentiable at x_{0}, the graph at x_{0} is smooth (no corners), tangent line is well defined and approximates well the function around x_{0}.
Functions of two variables: differentiability gives the condition when the surface at $\left(x_{0}, y_{0}\right)$ is smooth, by which we mean that the tangent plane at $\left(x_{0}, y_{0}\right)$ exists.
Notice, that whenever $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist, we can always write the equation

$$
\begin{equation*}
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) . \tag{*}
\end{equation*}
$$

But this does not mean that the tangent plane exists (if it exists, it is given by $(*)$).

Differentiability
Def. f is differentiable at $\left(x_{0}, y_{0}\right)$ if $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist and the error term

$$
E(x, y)=f(x, y)-\left[f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)\right]
$$

satisfies

This means that

$$
f(x, y)=
$$

and $E(x, y)$ goes to zero faster than the distance between (x, y) and $\left(x_{0}, y_{0}\right)$.

Remark If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then $f(x, y)$ is continuous at (x_{0}, y_{0}).

Differentiability
The existence of partial derivatives is not sufficient to have differentiability.
Example

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0 & ,(x, y)=0\end{cases}
$$

Then $f_{x}(x, y)=\{$

$$
\text { , } f_{y}(x, y)=\{
$$

For $\left(x_{0}, y_{0}\right)=(0,0), f(0,0)=, f_{x}(0,0)=, f_{y}(0,0)=$, so

$$
E(x, y)=\quad, \text { and }
$$

Differentiability
But, if $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist AND are continuous in a neighborhood of $\left(x_{0}, y_{0}\right)$, then f is differentiable at $\left(x_{0}, y_{0}\right)$
Theorem
If $f(x, y), f_{x}(x, y), f_{y}(x, y)$ all exist in a neighborhood of $\left(x, y y_{0}\right)$ and

The chain rule
Recall that for functions of one variable

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Thy (Chain rule for one independent variable)
Let $x(t)$ and $y(t)$ be differentiable functions,
let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function. Then

$$
\frac{d}{d t}[f(x(t), y(t))]=
$$

Example Compute $\frac{d}{d t}[f(\sin t, \cos t)]$ with $f(x, y)=4 x^{2}+3 y^{2}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=, \frac{\partial f}{\partial y}=, \frac{d}{d t} \sin t=, \frac{d}{d t} \cos t= \\
& \frac{d}{d t}[f(\sin t, \cos t)]=
\end{aligned}
$$

The chain rule
Thy (Chain rule for two independent variables) Suppose $x(u, v)$ and $y(u, v)$ are differentiable, and suppose $f(x, y)$ is differentiable. Then $z=f(x(u, v), y(u, v))$ is differentiable (function from \mathbb{R}^{2} to \mathbb{R}^{2}) and

$$
\begin{aligned}
& \frac{\partial z}{\partial u}= \\
& \frac{\partial z}{\partial v}=
\end{aligned}
$$

Example $z=f(x, y)=e^{x^{2}+3 y}, x(u, v)=u+2 v, y(u, v)=u-v$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\quad, \frac{\partial f}{\partial y}=\quad, \frac{\partial x}{\partial u}=, \frac{\partial x}{\partial \sigma}=, \frac{\partial y}{\partial u}=, \frac{\partial y}{\partial v}= \\
& \frac{\partial z}{\partial u}=
\end{aligned}
$$

