MATH 10C: Calculus III (Lecture B00)

mathwebucsd.edu/~ynemish/teaching/10c

Today: Partial derivatives

Next: Strang 4.4

Week 6:

- homework 5 (due Friday, November 4, 11:59 PM)

Tangent planes
Recall, if f is a function of one real variable, then its graph determines a curve C in \mathbb{R}^{2}, and the tangent line to the graph of f at point x_{0} is the line that "touches" the curve C at point $\left(x_{0}, f\left(x_{0}\right)\right)$

If f is a function of two variables, then its graph determines a surface S, and the tangent plane to S at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is a plane that "touches" S at this point.

Tangent plane
Def. Let $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on a surface S, and let C be any curve passing through P_{0} and lying entirely in S. If the tangent lines to all such curves C at P_{0} lie in the same plane, then this plane is called the
Def. Let S be a surface defined by a differentiable function $z=f(x, y)$.
Let $P_{0}=\left(x_{0}, y_{0}\right)$ be in the domain of f.
Then the equation of the tangent plane to S at P_{0} is

Tangent plane
To see that this formula is correct, we can find two curves in S that pass through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and determine the equations of the tangent lines.
Take $\vec{p}(t)=$ and $\vec{q}(s)=$
Then for any t (such that $\left(t, y_{0}\right)$ is in the domain of f) $\vec{p}(t)$

- Similarly, for any $s \vec{q}(s)$

Moreover,
Tangent line to $\vec{p}(t)$ at $t=x_{0}: \vec{l}_{p}(t)=$
with $\quad \vec{p}^{\prime}(t)=$
Similarly, tangent line to $\vec{q}(s)$ at $s=y_{0}: \vec{l}_{q}(s)=$

$$
\vec{q}^{\prime}(s)=
$$

Tangent plane
Vectors $\vec{p}^{\prime}\left(x_{0}\right)=\left\langle 1,0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right\rangle$ and $\vec{q}^{\prime}\left(y_{0}\right)=\left\langle 0,1, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right\rangle$ are not parallel, therefore, together with the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{1}\right)\right)$ they determine a plane with normal vector

$$
\vec{n}=
$$

The equation of a plane passing through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ with normal vector \vec{n} is

Tangent plane
Example Find the equation of the tangent plane to the surface defined by the function $f(x, y)=e^{x y}$ at point $(1,-1)$

- Step 1: Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

$$
\frac{\partial f}{\partial x}=\quad \frac{\partial f}{\partial y}=
$$

- Step 2: Evaluate $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$

$$
\frac{\partial f}{\partial x}(1,-1)=\quad \frac{\partial f}{\partial y}(1,-1)=
$$

- Step 3: Evaluate $f\left(x_{0}, y_{0}\right): f(1,-1)=$
- Step 4: Plug everything into the equation:

Tangent plane does not always exist at every point
Example (tangent plane does not exist at $(0,0)$)
Let $f(x, y)=\left\{\begin{array}{lll}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq 0 & (f(x, y) \text { is continuous }) \\ 0, & (x, y)=0 & \text { S-surface defined by } f(x, y)\end{array}\right.$
Consider the curves:

Consider the curve $\vec{p}(t)=$
Then $f(t, t)=$

- For a tangent plane to a surface to exist, it is sufficient that the function that defines the surface is differentiable.

Linear approximation
Functions of one variable:

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

the tangent line at x_{0} can be used as the linear approximation of a function $f(x)$ at points x close to x_{0} :

$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ for x close to x_{0}
Functions of two variables: the tangent plane at $\left(x_{0}, y_{0}\right)$ can be used as the linear approximation of $f(x, y)$ at points close to $\left(x_{0}, y_{0}\right)$ Def. Given a function $z=f(x, y)$ with continuous partial derivatives that exist at $\left(x_{0}, y_{0}\right)$, the linear approximation of f at point $\left(x_{0}, y_{0}\right)$ is given by

Linear approximation
Example
Given function $f(x, y)=e^{2 x-y-1}$ approximate $f(1.01,0.99)$ using points $(1,1)$ as (x_{0}, y_{0}).

- Compute the derivatives

$$
f_{x}(x, y)=\quad, f_{y}(x, y)=
$$

- Evaluate $f_{1} f_{x}$ and f_{y} at $\left(x_{0}, y_{0}\right)$

$$
f(1,1)=, f_{x}(1,1)=, \quad f_{y}(1,1)=
$$

- Write the linear approximation

$$
L(x, y)=
$$

- Compute the approximation: $L(1.01,0.99)=$

Differentiability
Functions of one variable: if a function is differentiable at x_{0}, the graph at x_{0} is smooth (no corners), tangent line is well defined and approximates well the function around x_{0}.
Functions of two variables: differentiability gives the condition when the surface at $\left(x_{0}, y_{0}\right)$ is smooth, by which we mean that the tangent plane at $\left(x_{0}, y_{0}\right)$ exists.
Notice, that whenever $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist, we can always write the equation

$$
\begin{equation*}
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) . \tag{*}
\end{equation*}
$$

But this does not mean that the tangent plane exists (if it exists, it is given by $(*)$).

Differentiability
Def. f is differentiable at $\left(x_{0}, y_{0}\right)$ if $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist and the error term

$$
E(x, y)=f(x, y)-\left[f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)\right]
$$

satisfies

This means that

$$
f(x, y)=
$$

and $E(x, y)$ goes to zero faster than the distance between (x, y) and $\left(x_{0}, y_{0}\right)$.

Remark If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then $f(x, y)$ is continuous at (x_{0}, y_{0}).

Differentiability
The existence of partial derivatives is not sufficient to have differentiability.
Example

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0 & ,(x, y)=0\end{cases}
$$

Then $f_{x}(x, y)=\{$

$$
\text { , } f_{y}(x, y)=\{
$$

For $\left(x_{0}, y_{0}\right)=(0,0), f(0,0)=, f_{x}(0,0)=, f_{y}(0,0)=$, so

$$
E(x, y)=\quad, \text { and }
$$

Differentiability
But, if $f_{x}\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)$ exist AND are continuous in a neighborhood of $\left(x_{0}, y_{0}\right)$, then f is differentiable at $\left(x_{0}, y_{0}\right)$
Theorem
If $f(x, y), f_{x}(x, y), f_{y}(x, y)$ all exist in a neighborhood of $\left(x, y y_{0}\right)$ and

The chain rule
Recall that for functions of one variable

$$
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Thy (Chain rule for one independent variable)
Let $x(t)$ and $y(t)$ be differentiable functions,
let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function. Then

$$
\frac{d}{d t}[f(x(t), y(t))]=
$$

Example Compute $\frac{d}{d t}[f(\sin t, \cos t)]$ with $f(x, y)=4 x^{2}+3 y^{2}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=, \frac{\partial f}{\partial y}=, \frac{d}{d t} \sin t=, \frac{d}{d t} \cos t= \\
& \frac{d}{d t}[f(\sin t, \cos t)]=
\end{aligned}
$$

The chain rule
Thy (Chain rule for two independent variables) Suppose $x(u, v)$ and $y(u, v)$ are differentiable, and suppose $f(x, y)$ is differentiable. Then $z=f(x(u, v), y(u, v))$ is differentiable (function from \mathbb{R}^{2} to \mathbb{R}^{2}) and

$$
\begin{aligned}
& \frac{\partial z}{\partial u}= \\
& \frac{\partial z}{\partial v}=
\end{aligned}
$$

Example $z=f(x, y)=e^{x^{2}+3 y}, x(u, v)=u+2 v, y(u, v)=u-v$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\quad, \frac{\partial f}{\partial y}=\quad, \frac{\partial x}{\partial u}=, \frac{\partial x}{\partial \sigma}=, \frac{\partial y}{\partial u}=, \frac{\partial y}{\partial v}= \\
& \frac{\partial z}{\partial u}=
\end{aligned}
$$

