MATH 10C: Calculus III (Lecture B00)

mathwebu.ucsd.edu/~ynemish/teaching/10c

Today: Tangent planes

Next: Strang 4.4

Week 6:

- homework 5 (due Friday, November 4, 11:59 PM)

Tangent planes
Recall, if f is a function of one real variable, then its graph determines a curve C in \mathbb{R}^{2}, and the tangent line to the graph of f at point x_{0} is the line that "touches" the curve C at point $\left(x_{0}, f\left(x_{0}\right)\right)$

If f is a function of two variables, then its graph determines a surface S, and the tangent plane to S at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is a plane that "touches" S at this point.

Tangent plane
Def. Let $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on a surface S, and let C be any curve passing through P_{0} and lying entirely in S. If the tangent lines to all such curves C at P_{0} lie in the same plane, then this plane is called the tangent plane to S a P_{0}
Def. Let S be a surface defined by a differentiable function $z=f(x, y)$.
Let $P_{0}=\left(x_{0}, y_{0}\right)$ be in the domain of f.
Then the equation of the tangent plane to S at P_{0} is

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y\right)\left(y-y_{0}\right)
$$

Tangent plane
To see that this formula is correct, we can find two curves in S that pass through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and determine the equations of the tangent lines.
Take $\vec{p}(t)=\left\langle t, y_{0}, f\left(t, y_{0}\right)\right\rangle \quad$ and $\vec{q}(s)=\left\langle x_{0}, s, f\left(x_{0}, s\right)\right\rangle$
Then for any t (such that $\left(t, y_{0}\right)$ is in the domain of f) $\vec{p}(t)$ is a point on S. Similarly, for any $s \vec{q}(s)$ is a point on S. Moreover, $\vec{p}\left(x_{0}\right)=\vec{g}\left(y_{0}\right)=\left\langle x_{0}, y_{0}, f\left(x_{0}, y_{1}\right)\right\rangle$
Tangent line to $\vec{p}(t)$ at $t=x_{0}: \vec{l}_{p}(t)=\vec{p}\left(x_{0}\right)+\vec{p}^{\prime}\left(x_{0}\right)\left(t-x_{0}\right)$ with $\quad \vec{p}^{\prime}(t)=\left\langle 1,0, \frac{\partial f}{\partial x}(t, y),\right\rangle$
Similarly, tangent line to $\vec{q}(s)$ at $s=y_{0}: \vec{l}_{q}(s)=\vec{q}\left(y_{0}\right)+\vec{q}^{\prime}\left(y_{0}\right)\left(s-y_{0}\right)$

$$
\vec{q}^{\prime}(s)=\left\langle 0,1, \frac{\partial f}{\partial y}\left(x_{0}, s\right)\right\rangle
$$

Tangent plane $\quad \vec{n}=\langle a, b, c\rangle, P_{0}=\left(x_{0}, y_{0}, z_{0}\right), \vec{n} \cdot\left\langle x-x_{0}, y-y_{1}, z-z_{0}\right\rangle$
Vectors $\vec{p}^{\prime}\left(x_{0}\right)=\left\langle 1,0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right\rangle$ and $\vec{q}^{\prime}\left(y_{0}\right)=\left\langle 0,1, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right\rangle$ are not parallel, therefore, together with the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{1}\right)\right)$ they determine a plane with normal vector

$$
\begin{aligned}
\vec{n}=\vec{q}^{\prime}\left(y_{0}\right) \times \vec{p}^{\prime}\left(x_{0}\right) & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
0 & 1 & \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \\
1 & 0 & \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)
\end{array}\right| \\
& =\left\langle\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right),-1\right\rangle
\end{aligned}
$$

The equation of a plane passing through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ with normal vector \vec{n} is

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-f\left(x_{0}, y_{0}\right)\right)=0
$$

Tangent plane
Example Find the equation of the tangent plane to the surface defined by the function $f(x, y)=e^{x y}$ at point $(1,-1)$

- Step 1: Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

$$
\frac{\partial f}{\partial x}=e^{x y} y \quad \frac{\partial f}{\partial y}=e^{x y} \cdot x
$$

- Step 2: Evaluate $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$

$$
\frac{\partial f}{\partial x}(1,-1)=e^{-1} \cdot(-1)=-e^{-1}=\frac{-1}{e} \quad \frac{\partial f}{\partial y}(1,-1)=e^{-1} \cdot 1=e^{-1}=\frac{1}{e}
$$

- Step 3: Evaluate $f\left(x_{0}, y_{0}\right): f(1,-1)=e^{-1}=\frac{1}{e}$
- Step 4: Plug everything into the equation:

$$
z=\frac{1}{e}+\left(-\frac{1}{e}\right)(x-1)+\frac{1}{e}(y+1)
$$

Tangent plane does not always exist at every point
Example (tangent plane does not exist at $(0,0)$)
Let $f(x, y)=\left\{\begin{array}{lll}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq 0 & (f(x, y) \text { is continuous }) \\ 0, & (x, y)=0 & \text { S-surface defined by } f(x, y)\end{array}\right.$
Consider the curves:

Consider the curve $\vec{p}(t)=$
Then $f(t, t)=$

- For a tangent plane to a surface to exist, it is sufficient that the function that defines the surface is differentiable.

Linear approximation
Functions of one variable:
the tangent line at x_{0} can be used as the linear approximation of a function $f(x)$ at points x close to x_{0} :

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ for x close to x_{0}
Functions of two variables: the tangent plane at $\left(x_{0}, y_{0}\right)$ can be used as the linear approximation of $f(x, y)$ at points close to $\left(x_{0}, y_{0}\right)$ Def. Given a function $z=f(x, y)$ with continuous partial derivatives that exist at $\left(x_{0}, y_{0}\right)$, the linear approximation of f at point $\left(x_{0}, y_{0}\right)$ is given by $L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$

Linear approximation
Example
Given function $f(x, y)=e^{2 x-y-1}$ approximate $f(1.01,0.99)$ using points $(1,1)$ as $\left(x_{0}, y_{0}\right)$.

- Compute the derivatives

$$
f_{x}(x, y)=2 e^{2 x-y-1}, f_{y}(x, y)=-e^{2 x-y-1}
$$

- Evaluate f, f_{x} and f_{y} af $\left(x_{0}, y_{0}\right)$

$$
f(1,1)=e^{0}=1, \quad f_{x}(1,1)=2, \quad f_{y}(1,1)=-1
$$

- Write the linear approximation

$$
e^{0.03}=1.0304
$$

$$
L(x, y)=1+2(x-1)-(y-1)
$$

$$
=1.03
$$

- Compute the approximation: $L(1.01,0.99)=1+2 \cdot 0.01-(-0.01)$

