MATH 10C: Calculus III (Lecture B00)

mathwebucsd.edu/~ynemish/teaching/10c

Today: Partial derivatives

Next: Strang 4.4

Week 6:

- homework 5 (due Friday, November 4, 11:59 PM)

Limit of a function of two variables
ε, δ error tolerance)
Def Consider a point $(a, b) \in \mathbb{R}^{2}$. A δ-disk centered at point (a, b) is the open disk of radius δ centered at (a, b)

$$
\left\{(x, y) \mid(x-a)^{2}+(y-b)^{2}<\delta^{2}\right\}
$$

Def. The limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$ is L

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

if for each $\varepsilon>0$ there exists a small enough $\delta>0$ such that all points in a δ-disk around (x_{0}, y_{0}), except possible $\left(x_{0}, y_{0}\right)$ itself, $f(x, y)$ is no more than ε away from L. (For any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x, y)-L|<\varepsilon$ whenever $\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$.)

Computing limits. Limit laws
Theorem 4.1 Let $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L, \lim _{(x, y) \rightarrow(a, b)} g(x, y)=M, c$-constant
$\lim _{(x, y) \rightarrow(a, b)} c=c \quad \lim _{(x, y) \rightarrow(a, b)} x=a \quad \lim _{(x, y) \rightarrow(a, b)} y=b$
$\lim _{(x, y) \rightarrow(a, b)}[f(x, y) \pm g(x, y)]=L \pm M \quad \lim _{(x, y) \rightarrow(a, b)}[f(x, y) g(x, y)]=L M$

- If $M \neq 0, \lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}$
$\lim _{(x, y) \rightarrow(a, b)}[c f(x, y)]=c L$
$\lim _{(x, y) \rightarrow(a, b)}[f(x, y)]^{n}=L^{n} \quad \lim _{(x, y) \rightarrow(a, b)} \sqrt[n]{f(x, y)}=\sqrt[n]{L}$

Examples

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y+1}{x^{2}+y^{2}+1}=
$$

$$
\lim _{(x, y) \rightarrow(2,1)} \frac{x-y-1}{\sqrt{x-y}-1}=
$$

Partial derivatives of functions of two variables
Functions of one variable $y=f(x)$: the derivative gives the instantaneous rate of change of y as a function of x.

Functions of two variables $z=f(x, y)$ have 2 independent variables, we need two (partial) derivatives.

Def The partial derivative of $f(x, y)$ with respect to x is $\quad f_{x}=\frac{\partial f}{\partial x}=$

The partial derivative of $f(x, y)$ with respect to y is $\quad f_{y}=\frac{\partial f}{\partial y}=$

Partial derivatives of functions of two variables
Partial derivatives measure the instantaneous rate of change of f if we change only the x variable $\frac{\partial f}{\partial x}$
 or only the y variable $\frac{\partial f}{\partial y}$

Calculating partial derivatives
Rule To differentiate $f(x, y)$ with respect to x, treat the variable y as a constant, and differentiate f as a function of one variable x :

$$
\frac{\partial}{\partial x}\left(x^{3}-12 x y^{2}-x^{2} y+4 x-y-3\right)=
$$

To differentiate $f(x, y)$ with respect to y, treat the variable x as a constant, and differentiate f as a function of one variable y :

$$
\frac{\partial}{\partial y}\left(x^{3}-12 x y^{2}-x^{2} y+4 x-y-3\right)=
$$

Calculating partial derivatives
Example $f(x, y)=e^{-\frac{x^{2}+y^{2}}{2}}$
Compute $\frac{\partial f}{\partial x}=$

$$
\frac{\partial f}{\partial y}=
$$

Higher-order partial derivatives
Each partial derivative is itself a function of two variables, so we can compute their partial derivatives, which we call higher-order partial derivatives. For example, there are 4 second-order partial derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}}=\quad \cdot \frac{\partial^{2} f}{\partial y \partial x}=\quad, \frac{\partial^{2} f}{\partial x \partial y}=\quad, \frac{\partial^{2} f}{\partial y^{2}}=
$$

$f_{x y}$ and $f_{y x}$ are called
$f_{x y}$ and $f_{y x}$ are not necessarily equal.
The If $f_{x y}$ and $f y x$ are continuous on an open disk D_{1} then $f_{x y}=f_{y x}$ on D.

Higher-order partial derivatives
Example Let $f(x, y)=x^{2} \cos (2 x-y)+x e^{-y^{2}}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}= \\
& \frac{\partial^{2} f}{\partial y \partial x}= \\
& \frac{\partial f}{\partial y}= \\
& \frac{\partial^{2} f}{\partial x \partial y}=
\end{aligned}
$$

It is not true in general that $f_{x y}=f_{y x}$.

Tangent planes
Recall, if f is a function of one real variable, then its graph determines a curve C in \mathbb{R}^{2}, and the tangent line to the graph of f at point x_{0} is the line that "touches" the curve C at point $\left(x_{0}, f\left(x_{0}\right)\right)$

If f is a function of two variables, then its graph determines a surface S, and the tangent plane to S at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is a plane that "touches" S at this point.

Tangent plane
Def. Let $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on a surface S, and let C be any curve passing through P_{0} and lying entirely in S. If the tangent lines to all such curves C at P_{0} lie in the same plane, then this plane is called the
Def. Let S be a surface defined by a differentiable function $z=f(x, y)$.
Let $P_{0}=\left(x_{0}, y_{0}\right)$ be in the domain of f.
Then the equation of the tangent plane to S at P_{0} is

Tangent plane
To see that this formula is correct, we can find two curves in S that pass through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and determine the equations of the tangent lines.
Take $\vec{p}(t)=$ and $\vec{q}(s)=$
Then for any t (such that $\left(t, y_{0}\right)$ is in the domain of f) $\vec{p}(t)$

- Similarly, for any $s \vec{q}(s)$

Moreover,
Tangent line to $\vec{p}(t)$ at $t=x_{0}: \vec{l}_{p}(t)=$
with $\quad \vec{p}^{\prime}(t)=$
Similarly, tangent line to $\vec{q}(s)$ at $s=y_{0}: \vec{l}_{q}(s)=$

$$
\vec{q}^{\prime}(s)=
$$

Tangent plane
Vectors $\vec{p}^{\prime}\left(x_{0}\right)=\left\langle 1,0, \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right\rangle$ and $\vec{q}^{\prime}\left(y_{0}\right)=\left\langle 0,1, \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right\rangle$ are not parallel, therefore, together with the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{1}\right)\right)$ they determine a plane with normal vector

$$
\vec{n}=
$$

The equation of a plane passing through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ with normal vector \vec{n} is

Tangent plane
Example Find the equation of the tangent plane to the surface defined by the function $f(x, y)=e^{x y}$ at point $(1,-1)$

- Step 1: Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

$$
\frac{\partial f}{\partial x}=\quad \frac{\partial f}{\partial y}=
$$

- Step 2: Evaluate $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$

$$
\frac{\partial f}{\partial x}(1,-1)=\quad \frac{\partial f}{\partial y}(1,-1)=
$$

- Step 3: Evaluate $f\left(x_{0}, y_{0}\right): f(1,-1)=$
- Step 4: Plug everything into the equation:

