MATH 10C: Calculus III (Lecture B00)

mathwebueucsd.edu/~ynemish/teaching/10c

Today: Partial derivatives

Next: Strang 4.4

Week 5:

- homework 4 (due Friday, October 28)
- regrades of Midterm 1 on Gradescope until October 30

Limit of a function of two variables
Def Consider a point $(a, b) \in \mathbb{R}^{2}$. A δ-disk centered at point (a, b) is the open disk of radius δ centered at (a, b)

$$
\left\{(x, y) \mid(x-a)^{2}+(y-b)^{2}<\delta^{2}\right\}
$$

Def. The limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$ is L

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

if for each $\varepsilon>0$ there exists a small enough $\delta>0$ such that all points in a δ-disk around (x_{0}, y_{0}), except possible $\left(x_{0}, y_{0}\right)$ itself, $f(x, y)$ is no more than ε away from L. (For any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x, y)-L|<\varepsilon$ whenever $\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$.)

Limit of a function of two variables This definition ensures that if $\lim _{(x, y) \rightarrow\left(x, y_{0}\right)} f(x, y)=L$, then any way of approaching $\left(x_{0}, y_{0}\right)$ results in the same limit L.
(Another) example when the limit fails to exist:

- approach (0.0) along the
- approach $(0,0)$ along the curve

Computing limits. Limit laws
Theorem 4.1 Let $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L, \lim _{(x, y) \rightarrow(a, b)} g(x, y)=M, c$-constant
$\lim _{(x, y) \rightarrow(a, b)} c=\quad \lim _{(x, y) \rightarrow(a, b)} x=$
$\lim _{(x, y) \rightarrow(a, b)} y=$

- $\lim _{(x, y) \rightarrow(a, b)}[f(x, y) \pm g(x, y)]=$
$\lim _{(x, y) \rightarrow(a, b)}[f(x, y) g(x, y)]=$
- $\quad \lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=$
$\lim _{(x, y) \rightarrow(a, b)}[c f(x, y)]=$
$\lim _{(x, y) \rightarrow(a, b)}[f(x, y)]^{n}=$
$\lim _{(x, y) \rightarrow(a, b)} \sqrt[n]{f(x, y)}=$

Computing limits. Limit laws
Examples

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(1,2)} & \frac{\sqrt{3 x-y}}{\left(x^{2}+x y+y^{3}\right)^{2}} \\
= & \frac{\lim _{(x, y) \rightarrow(1,2)} \sqrt{3 x-y}}{\lim _{(x, y) \rightarrow(1,2)}\left(x^{2}+x y+y^{3}\right)^{2}} \\
= & \frac{\sqrt{\lim _{(x, y) \rightarrow(1,2)}[3 x-y]}}{\left(\lim _{(x, y) \rightarrow(1,2)}\left[x^{2}+x y+y^{3}\right]\right)^{2}} \\
= & \frac{\sqrt{3 \lim _{(x, y) \rightarrow(1,2)} x-\lim _{(x, y) \rightarrow(1,2)}}}{\left(\left(\lim _{(x, y) \rightarrow(1,2)} x\right)^{2}+\left(\lim _{(x, y) \rightarrow(1,2)} x\right)\left(\lim _{(x, y) \rightarrow(1,2)} y\right)+\left(\lim _{(x, y) \rightarrow(1,2)} y\right)^{3}\right)^{2}} \\
= & \frac{\sqrt{3 \cdot 1-2}}{\left(1+1 \cdot 2+2^{3}\right)^{2}}=\frac{1}{11^{2}}=\frac{1}{121}
\end{aligned}
$$

Continuity of functions of two variables
Def. A function $f(x, y)$ is continuous at a point (a, b) if
(i)
(ii)
(iii)

Properties

1. If $f(x, y)$ and $g(x, y)$ are continuous at $\left(x_{0}, y_{0}\right)$, then is continuous at $\left(x_{0}, y_{0}\right)$
2. If $\varphi(x)$ is continuous at x_{0} and $\psi(y)$ is continuous at y_{0}, then is continuous at $\left(x_{0}, y_{0}\right)$

Continuity of functions of two variables
Properties (cont.)
3. If $g(x, y)$ is continuous at $\left(x_{0}, y_{0}\right)$, and $f(z)$ is continuous at $z_{0}:=g\left(x_{0}, y_{0}\right)$, then is continuous at $\left(x_{0}, y_{0}\right)$

Continuity of functions of two variables
Example $\frac{\sqrt{3 x-y}}{\left(x^{2}+x y+y^{3}\right)^{2}}: 3 x-y$ is continuous on
\sqrt{z} is continuous for
so $\sqrt{3 x-y}$ is continuous for
Similarly, $x^{2}+x y+y^{3}$ is continuous on
$\frac{1}{z^{2}}$ is continuous for all
so $\frac{1}{\left(x^{2}+x y+y^{3}\right)^{2}}$ is continuous at
Take $\left(x_{0}, y_{0}\right)=(1,2)$. Then , so both
f_{1} and f_{2} are

Partial derivatives of functions of two variables
Functions of one variable $y=f(x)$: the derivative gives the instantaneous rate of change of y as a function of x.

Functions of two variables $z=f(x, y)$ have 2 independent variables, we need two (partial) derivatives.

Def The partial derivative of $f(x, y)$ with respect to x is $\quad f_{x}=\frac{\partial f}{\partial x}=$

The partial derivative of $f(x, y)$ with respect to y is $\quad f_{y}=\frac{\partial f}{\partial y}=$

Partial derivatives of functions of two variables
Partial derivatives measure the instantaneous rate of change of f if we change only the x variable $\frac{\partial f}{\partial x}$
 or only the y variable $\frac{\partial f}{\partial y}$

Calculating partial derivatives
Rule To differentiate $f(x, y)$ with respect to x, treat the variable y as a constant, and differentiate f as a function of one variable x :

$$
\frac{\partial}{\partial x}\left(x^{3}-12 x y^{2}-x^{2} y+4 x-y-3\right)=
$$

To differentiate $f(x, y)$ with respect to y, treat the variable x as a constant, and differentiate f as a function of one variable y :

$$
\frac{\partial}{\partial y}\left(x^{3}-12 x y^{2}-x^{2} y+4 x-y-3\right)=
$$

Calculating partial derivatives
Example $f(x, y)=e^{-\frac{x^{2}+y^{2}}{2}}$
Compute $\frac{\partial f}{\partial x}=$

$$
\frac{\partial f}{\partial y}=
$$

Higher-order partial derivatives
Each partial derivative is itself a function of two variables, so we can compute their partial derivatives, which we call higher-order partial derivatives. For example, there are 4 second-order partial derivatives

$$
\frac{\partial^{2} f}{\partial x^{2}}=\quad \cdot \frac{\partial^{2} f}{\partial y \partial x}=\quad, \frac{\partial^{2} f}{\partial x \partial y}=\quad, \frac{\partial^{2} f}{\partial y^{2}}=
$$

$f_{x y}$ and $f_{y x}$ are called
$f_{x y}$ and $f_{y x}$ are not necessarily equal.
The If $f_{x y}$ and $f y x$ are continuous on an open disk D_{1} then $f_{x y}=f_{y x}$ on D.

Higher-order partial derivatives
Example Let $f(x, y)=x^{2} \cos (2 x-y)+x e^{-y^{2}}$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}= \\
& \frac{\partial^{2} f}{\partial y \partial x}= \\
& \frac{\partial f}{\partial y}= \\
& \frac{\partial^{2} f}{\partial x \partial y}=
\end{aligned}
$$

It is not true in general that $f_{x y}=f_{y x}$.

Tangent planes
Recall, if f is a function of one real variable, then its graph determines a curve C in \mathbb{R}^{2}, and the tangent line to the graph of f at point x_{0} is the line that "touches" the curve C at point $\left(x_{0}, f\left(x_{0}\right)\right)$

If f is a function of two variables, then its graph determines a surface S, and the tangent plane to S at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is a plane that "touches" S at this point.

Tangent plane
Def. Let $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on a surface S, and let C be any curve passing through P_{0} and lying entirely in S. If the tangent lines to all such curves C at Po lie in the same plane, then this plane is called the
Def. Let S be a surface defined by a differentiable function $z=f(x, y)$.
Let $P_{0}=\left(x_{0}, y_{0}\right)$ be in the domain of f.
Then the equation of the tangent plane to S at P_{0} is

