MATH 10C: Calculus III (Lecture B00)

mathwebueucsd.edu/~ynemish/teaching/10c

Today: Partial derivatives

Next: Strang 4.4

Week 5:

- homework 4 (due Friday, October 28)
- regrades of Midterm 1 on Gradescope until October 30

Limit of a function of two variables
Def Consider a point $(a, b) \in \mathbb{R}^{2}$. A δ-disk centered at point (a, b) is the open disk of radius δ centered at (a, b)

$$
\left\{(x, y) \mid(x-a)^{2}+(y-b)^{2}<\delta^{2}\right\}
$$

Def. The limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$ is L

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

if for each $\varepsilon>0$ there exists a small enough $\delta>0$ such that all points in a δ-disk around (x_{0}, y_{0}), except possible $\left(x_{0}, y_{0}\right)$ itself, $f(x, y)$ is no more than ε away from L. (For any $\varepsilon>0$ there exists $\delta>0$ such that $|f(x, y)-L|<\varepsilon$ whenever $\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$.)

Limit of a function of two variables This definition ensures that if $\lim _{(x, y) \rightarrow\left(x, y_{0}\right)} f(x, y)=L$, then any way of approaching $\left(x_{0}, y_{0}\right)$ results in the same limit L.
(Another) example when the limit fails to exist: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist

- approach (0.0) along the line $x=0$; on this line $\frac{0 \cdot y^{2}}{0^{2}+y^{4}}=0$
- approach $(0,0)$ along the curve

$$
x=y^{2}, \quad \frac{y^{2} \cdot y^{2}}{y^{4}+y^{4}}=\frac{1}{2}
$$

Computing limits. Limit laws
Theorem 4.1 Let $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L, \lim _{(x, y) \rightarrow(a, b)} g(x, y)=M, c$-constant

- $\lim _{(x, y) \rightarrow(a, b)} c=c \quad \lim _{(x, y) \rightarrow(a, b)} x=a \quad \lim _{(x, y) \rightarrow(a, b)} y=b$
- $\lim _{(x, y) \rightarrow(a, b)}[f(x, y) \pm g(x, y)]=L \pm M \quad$ - $\lim _{(x, y) \rightarrow(a, b)}[f(x, y) g(x, y)]=L M$
- If $M \neq 0, \lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{L}{M}$
- $\lim _{(x, y) \rightarrow(a, b)}[c f(x, y)]=c L$
- $\lim _{(x, y) \rightarrow(a, b)}[f(x, y)]^{n}=L^{n} \quad$ - $\lim _{(x, y) \rightarrow(a, b)} \sqrt[n]{f(x, y)}=\sqrt[n]{L}$

Computing limits. Limit laws
Examples

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(1,2)} & \frac{\sqrt{3 x-y}}{\left(x^{2}+x y+y^{3}\right)^{2}} \quad(x, y) \rightarrow(0,0) y \\
= & \frac{\lim _{(x, y) \rightarrow(1,2)} \sqrt{3 x-y}}{\lim _{(x, y) \rightarrow(1,2)}\left(x^{2}+x y+y^{3}\right)^{2}} \\
= & \frac{\sqrt{\lim _{(x, y) \rightarrow(1,2)}[3 x-y] \rightarrow(0,0)} \text { } x=0}{\left(\lim _{(x, y) \rightarrow(1,2)}\left[x^{2}+x y+y^{3}\right]\right)^{2}} \\
= & \frac{\sqrt{3 \lim _{(x, y) \rightarrow(1,2)} x-\lim _{(x, y) \rightarrow(1,2)} y}}{\left.\left(\left(\lim _{(x, y) \rightarrow(1,2)} x\right)^{2}+\left(\lim _{(x, y) \rightarrow(1,2)} x\right)\left(\lim _{(x, y) \rightarrow(1,2)} y\right)+\lim _{(x, y) \rightarrow(1,2)} y\right)^{3}\right)^{2}} \\
= & \frac{\sqrt{3 \cdot 1-2}}{\left(1+1 \cdot 2+2^{3}\right)^{2}}=\frac{1}{11^{2}}=\frac{1}{121}
\end{aligned}
$$

Continuity of functions of two variables
Def. A function $f(x, y)$ is continuous at a point (a, b) if
(i) $f(a, b)$ exists:
(ii) $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists; and
(iii) $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$

Properties

1. If $f(x, y)$ and $g(x, y)$ are continuous at $\left(x_{0}, y_{0}\right)$, then $f(x, y) \pm g(x, y)$ is continuous at $\left(x_{0}, y_{0}\right)$
2. If $\varphi(x)$ is continuous at x_{0} and $\psi(y)$ is continuous at y_{0}, then $f(x, y)=\varphi(x) \psi(y)$ is continuous at $\left(x_{0}, y_{0}\right)$

Continuity of functions of two variables
Properties (cont.)
3. If $g(x, y)$ is continuous at $\left(x_{0}, y_{0}\right)$, and $f(z)$ is continuous at $z_{0}=g\left(x_{0}, y_{0}\right)$, then $f \circ g(x, y)=f(g(x, y))$ is continuous at $\left(x_{0}, y_{0}\right)$

f

Continuity of functions of two variables
Example $\frac{\sqrt{3 x-y}}{\left(x^{2}+x y+y^{3}\right)^{2}}: \begin{array}{r}\text { gs } x, y) \\ 3 x-y\end{array}$ is continuous on \mathbb{R}^{2} $f(g(x, y))=f(x-y) \quad f(z)=\sqrt{z}$ is continuous for all $z \geq 0$ so $\sqrt{3 x-y}$ is continuous for all (x, y) such that $3 x-y \geq 0$ Similarly, $g(x, y)=x^{2}+x y+y^{3}$ is continuous on \mathbb{R}^{2}
$f(z)=\frac{1}{z^{2}}$ is continuous for all $z \neq 0$
$f(g(x, y)) \frac{1}{\text { so }} \frac{1}{\left(x^{2}+x y+y^{3}\right)^{2}}$ is continuous at all (x, y) such that $x^{2}+x y+y^{3} \neq 0$
$f_{2}(x, y)$
Take $\left(x_{0}, y_{0}\right)=(1,2)$. Then $3 \cdot 1-2=1>0,1^{2}+1 \cdot 2+2^{3}=11 \neq 0$, so both f_{1} and f_{2} are continuous at $(1,2)$ and thus

$$
\lim _{(x, y) \rightarrow(1,2)} f_{1}(x, y) f_{2}(x, y)=\lim _{(x, 1) \rightarrow(1,2)} f_{1}(x, y) \lim _{(x, y) \rightarrow(1,2)} f_{2}(x, y)=f_{1}(1,2) f_{2}(1,2)=1 \cdot \frac{1}{121}
$$

