MATH 10C: Calculus III (Lecture B00)

mathweb.ucsod.edu/~ynemish/teaching/10c

Today: Functions of two variables

Next: Strang 4.2

Week 5:

- homework 4 (due Friday, October 27)
- regrades of Midterm 1 on Gradescope until October 29

Functions of two variables
Def. A function of two variables maps each ordered pair (x, y) in a subset $D \subset \mathbb{R}^{2}$ to a unique real number $z=f(x, y)$. The set D is called the domain of the function. The range of f is the set of all real numbers z that has at least one ordered pair $(x, y) \in D$ s.t. $f(x, y)=z$.

If not specified, we choose the domain to be the set of all pairs (x, y) for which $f(x, y)$ is well-defined.

Functions of two variables
Example Find the domain and range of the function

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

Domain. One restriction: the number under the square root has to be nonnegative, i.e., $\quad 4-x^{2}-y^{2} \geq 0$
The set of all pairs $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}+y^{2} \leq 4$ is a disk of radius 2 centered at the origin
The domain of f is $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 4\right\}$
Range. For (x, y) in the domain the range of $x^{2}+y^{2}$ is interval $[0,4]$ the range of $4-x^{2}-y^{2}$ is interval $[0,4]$ the range of $\sqrt{4-x^{2}-y^{2}}$ is interval $[0,2]$ \uparrow range of f

Graph of a function of two variables
Function f of two variables: maps each pair (x, y) from its domain to a real number $z=f(x, y)$.
The graph of f consists of ordered triples $(x, y, f(x, y))$ for all (x, y) in the domain of f. We call the graph of a function of two variables a surface.
Example $f(x, y)=\sqrt{4-x^{2}-y^{2}}, \operatorname{dom}(f)=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$ Graph of f consists of all $(x, y, z) \in \mathbb{R}^{3}$ such that $z=\sqrt{4-x^{2}-y^{2}}$, or $x^{2}+y^{2}+z^{2}=4$ - equation of a sphere of radius 2 centered at $(0,0,0)$ (only the top half)

Level curves
Def. Given a function $f(x, y)$ and a number c in the range of f, a level curve of a function of two variables for the value c is defined to be the set of all points (x, y) satisfying the equation $f(x, y)=c$
Example $f(x, y)=\sqrt{4-x^{2}-y^{2}}$
Range of f is $[0,2]$.
Take $c=1$. Then the level curve of f for $c=1$ is defined by $f(x, y)=1$
$\sqrt{4-x^{2}-y^{2}}=1$ circle of radius $\sqrt{3}$ $x^{2}+y^{2}=3$ centered at $(0,0)$

Functions of more than two variables
In a similar way we can define functions of more than two variables, e.g., functions of three variables:

to each point (x, y, z) in the domain assign a real number $f(x, y, z)$.
Example $f(x, y, z)=\frac{1}{\sqrt{4-x^{2}-y^{2}-z^{2}}}$; domain: all points $(x, y, z) \in \mathbb{R}$ such that $4-x^{2}-y^{2}-z^{2}>0$, i.e. the ball of radius 2 centered at $(0,0,0)$) without the boundary/surface, $\operatorname{dom}(f)=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}<4\right\}$

Limit of a function of two variables
Informally $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x)=,L \quad$ means that $f(x, y)$ gets
closer to L as (x, y) gets closer to $\left(x_{0}, y_{0}\right)$.
We have to be careful with what
" (x, y) gets closer to $\left(x_{0}, y_{0}\right)^{n}$ means!
For example,
let $f(x, y)=\frac{x}{y}$

- If (x, y) approaches $(0,0)$ along the line $y=x \quad \lim _{L, 1} \frac{x}{y}=1$

- If (x, y) approaches $(0,0)$ along the line $y=-x \quad \lim _{L_{2} g(x, y)-(0,0)} \frac{x}{y}=-1$

Limit of a function of two variables
Def Consider a point $(a, b) \in \mathbb{R}^{2}$. A δ-disk centered at point (a, b) is the open disk of radius δ centered at (a, b)

$$
\left\{(x, y) \mid(x-a)^{2}+(y-b)^{2}<\delta^{2}\right\} \quad b-e_{a}^{8}
$$

Def. The limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$ is L

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

if for each $\varepsilon>0$ there exists a small enough $\delta>0$ such that all points in a δ-disk around (x_{0}, y_{0}) , except possible $\left(x_{0}, y_{0}\right)$ itself, $f(x, y)$ is no more than ε away from L.
For any $\varepsilon>0$ there exists $\delta>0$ s.t. $|f(x, y)-L|<\varepsilon$ whenever $\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$

y_{0}	\varnothing
	x_{0}

