MATH 10C: Calculus III (Lecture B00)

mathwebu.ucsd.edu/~ynemish/teaching/10c

Today: Projectile motion. Functions of two variables Next: Strang 4.1

Week 5:

- homework 4 (due Friday, October 27)
- regrades of Midterm 1 on Gradescope until October 29

Properties of derivatives of vector-valued functions
Thy 3.3. Let $\vec{r}(t)$ and $\vec{u}(t)$ be differentiable vector-valued functions, let $f(t)$ be a differentiable scalar function, let c be a scalar.
(i) $\frac{d}{d t}[c \vec{r}(t)]=\quad$ (scalar multiple)
(ii) $\frac{d}{d t}[\vec{r}(t) \pm \vec{u}(t)]=$
(sum and difference)
(iii) $\frac{d}{d t}[f(t) \vec{r}(t)]=$
(product with scalar. function)
(iv) $\frac{d}{d t}[\vec{r}(t) \cdot \vec{u}(t)]=$ (dot product)
(v) $\frac{d}{d t}[\vec{r}(t) \times \vec{u}(t)]=$
(cross product)
(vi) $\frac{d}{d t}[\vec{r}(f(t))]=$
(chain rule)

Properties of derivatives of vector-valued functions
(vii) If $\vec{r}(t) \cdot \vec{r}(t)=c$, then

Proof
(iv) $\frac{d}{d t}[\vec{r}(t) \cdot \vec{u}(t)]$

$$
\begin{aligned}
& = \\
& =
\end{aligned}
$$

(vii) $\frac{d}{d t}[\vec{r}(t) \cdot \vec{r}(t)]$

This means that if $\|\vec{r}(t)\|$ is constant, then

Motion in space
|f $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ is the position of the particle at time t, then

- $\vec{v}(t)=\vec{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$ is the velocity, and
- $\vec{a}(t)=\vec{r}^{\prime \prime}(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t), z^{\prime \prime}(t)\right\rangle$ is the acceleration, and
- $v(t)=\|\vec{v}(t)\|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}$ is the speed

Example: Projectile motion
Consider an object moving with initial velocity \vec{v}_{0} but with no forces acting on it other than gravity (ignore the effect of air resistance).
Newton's second law:
, where $m=$ mass of the object
Earth's gravity:
where $g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$

Projectile motion
Fix the coordinate system:

$$
\vec{F}_{g}=
$$

Newton's second law: $\vec{F}=m \vec{a}$ Earth's gravity: $\quad \vec{F}_{g}=$

Earth's gravity is the only force acting on the object

Projectile motion

$$
\vec{F}(t)=\vec{F}_{g}:
$$

(constant acceleration)
Since $\vec{a}(t)=\vec{v}^{\prime}(t)$, we have
Take antiderivative: $\vec{v}(t)=$
Determine \vec{c}_{1} by taking
(initial velocity):

$$
\vec{V}(0)=
$$

This gives the velocity of the object:

$$
\vec{v}(t)=
$$

Similarly, $\vec{v}(t)=$. By taking the antiderivative and $\vec{r}(0)=\vec{r}_{0}$

$$
\begin{aligned}
& \vec{r}(t)=\int \vec{v}(t) d t+\vec{c}_{0}= \\
& \vec{r}(0)=\vec{c}_{0}=\vec{r}_{0}, \text { so }
\end{aligned}
$$

Projectile motion
A projectile is shot by a howitzer with initial speed $800 \mathrm{~m} / \mathrm{s}$ on a flat terrain. Determine the max distance the projectile can cover before hitting the ground.

Equation of the trajectory: $\vec{r}(t)=$
Hitting the ground: second component or $\vec{r}(t)$ is 0 :

$$
\begin{array}{lcr}
& \text {.so } & \text {. The position of the hit is } \\
\vec{r}\left(t_{h}\right)= & \text {. Maximum is achieved } \\
\text { when } & \text { i.e., } & \text { Max distance is } 32 \mathrm{~km} \text {. }
\end{array}
$$

Functions of several variables

Functions of two variables
Def. A function of two variables maps each in a subset $D \subset \mathbb{R}^{2}$ to a
The set D is called the of the function. The range of f is the set of all real numbers z that has at least one ordered pair $(x, y) \in D$ s.t. $f(x, y)=z$.

\qquad \mathbb{R}

If not specified, we choose the domain to be the set of all pairs (x, y) for which $f(x, y)$ is well-defined.

Functions of two variables
Example Find the domain and range of the function

$$
f(x, y)=\sqrt{4-x^{2}-y^{2}}
$$

Domain. One restriction: the number under the square roof has to be nonnegative, i.e.,
The set of all pairs $(x, y) \in \mathbb{R}^{2}$ such that is a

The domain of f is
Range. For (x, y) in the domain the range of $x^{2}+y^{2}$ is the range of $4-x^{2}-y^{2}$ is the range of $\sqrt{4-x^{2}-y^{2}}$ is

Graph of a function of two variables
Function f of two variables: maps each pair (x, y) from its domain to a real number $z=f(x, y)$.
The graph of f consists of ordered triples $(x, y, f(x, y))$ for all (x, y) in the domain of f. We call the graph of a function of two variables a surface.
Example $f(x, y)=\sqrt{4-x^{2}-y^{2}}, \operatorname{dom}(f)=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$
Graph of f consists of all $(x, y, z) \in \mathbb{R}^{3}$
such that $z=\sqrt{4-x^{2}-y^{2}}$, or

- equation of a

Level curves
Def. Given a function $f(x, y)$ and a number c in the range of f, a level curve of a function of two variables for the value c is defined to be

Example $f(x, y)=\sqrt{4-x^{2}-y^{2}}$
Range of f is $[0,2]$.
Take. Then the level

curve of f for is defined by

Functions of more than two variables
In a similar way we can define functions of more than two variables, e.g., functions of three variables:

\qquad \mathbb{R}
to each point (x, y, z) in the domain assign a real number $f(x, y, z)$.
Example $f(x, y, z)=\quad$ i domain: all points $(x, y, z) \in \mathbb{R}$ such that , ie.

