## MATH 10C: Calculus III (Lecture B00)

## mathwebu.ucsd.edu/~ynemish/teaching/10c

## Today: Vector-valued functions

## Next: Strang 3.2

Week 4:

- homework 3 (due Tuesday, October 18)
- Midterm 1: Wednesday, October 19 (vectors, dot product, cross product, equations of lines and planes)

Velocity and acceleration Imagine a particle moving (smoothly) through space. Let

The velocity is the It describes the

The acceleration is the
Mathematically, the velocity is the derivative and the accelaration is
The derivatives are computed

Velocity and acceleration
Example Let $\vec{r}(t)=$
The velocity:
The acceleration:
The path of this particle is called a


Limits of vector-valued functions
Let $\vec{r}(t)=\left\langle r_{1}(t), r_{2}(t), r_{3}(t)\right\rangle$ be a vector-valued function and let $\vec{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle$. Then the expression
means that

If one or more of the limits $\lim _{t \rightarrow t_{0}} r_{1}(t), \lim _{t \rightarrow t_{0}} r_{2}(t)$ or $\lim _{t \rightarrow t_{0}} r_{3}(t)$ do not exist, we say that $\lim _{t \rightarrow t_{0}} \vec{r}(t)$ does not exist.
Example What is

$$
\lim _{t \rightarrow 0}\left\langle\frac{\sin t}{t}, e^{t}, \cos t\right\rangle
$$

Continuity of vector-valued functions
A vector-valued function $\vec{r}(t)$ is continuous at to if

This is equivalent to $\lim _{t \rightarrow t_{0}} r_{1}(t)=r_{1}\left(t_{0}\right), \lim _{t \rightarrow t_{0}} r_{2}(t)=r_{2}\left(t_{0}\right)$ and

$$
\lim _{t \rightarrow t_{0}} r_{3}(t)=r_{3}\left(t_{0}\right)
$$

Therefore, $\vec{r}(t)$ being continuous at $t_{0}$ is equivalent to

We say that $\vec{r}(t)$ is continuous if it is continuous at every single point to.

Derivatives of vector-valued functions The derivative of a vector-valued function $\vec{r}$ is

$$
\vec{r}^{\prime}(t)=
$$

provided that the limit exists. If $\vec{r}^{\prime}(t)$ exists, we say that $\vec{r}$ is - If $\vec{r}$ is differentiable at every point $t$ from the interval $(a, b)$, we say that $\vec{r}$ is differentiable on $(a, b)$.
Notice that if $\vec{r}(t)=\left\langle r_{1}(t), r_{2}(t), r_{3}(t)\right\rangle$, then

$$
\vec{r}^{\prime}(t)=
$$

$$
=
$$

Calculus of vector-valued functions
Example Let $\vec{r}(t)=\left\langle\sin t, e^{2 t}, t^{2}-4 t+2\right\rangle$
Then
Summary
Calculus concepts (limit, continuity, derivative) are applied to vector-valued functions componentwise (apply to each component separately).

If $\vec{r}(t)$ represents the position of some object, then

- $\vec{r}^{\prime}(t)$ is the velocity of this object $\left(\left\|\vec{r}^{\prime}(t)\right\|\right.$ is speed)
- $\vec{r}^{\prime \prime}(t)$ is the acceleration of the object

Tangent vectors. Tangent lines
Let $\vec{r}(t)$ be a vector-valued function. Suppose that $\vec{r}$ is differentiable at $t_{0}$.


$$
\vec{r}(t)=\langle\cos t, \sin t\rangle
$$

Then vector $\vec{r}^{\prime}(t)$ is
The targent line to $\vec{r}$ at $t_{0}$ is the line given by the vector equation

Tangent vectors. Tangent lines
The tangent line $\vec{l}(t)$ to $\vec{r}(t)$ at to has the

Example Imagine satellite orbiting a planet.


If the planet disappears at time $t_{0}$, then

Tangent vectors. Tangent lines
Example Let $\vec{r}(t)=\left\langle t^{2}-2, e^{3 t}, t\right\rangle$
Find the tangent line to $\vec{r}(t)$ at $t_{0}=1$.
First, find the tangent vector at $t_{0}=1$

Next, find the position at $t_{0}=1$
Finally, we can write the equation for the tangent line

Definition We call the principal unit tantent vector to $\vec{r}$ at $t$. (provided $\left.\left\|\vec{r}^{\prime}(t)\right\| \neq 0\right)$

