MATH 10C: Calculus III (Lecture B00)

mathwew.uncsd.edu/~ynemish/teaching/10c

Today: Vector-valued functions

Next: Strang 3.2

Week 3:

- homework 3 (due Tuesday, October 18)
- Midterm 1: Wednesday, October 19 (vectors, dot product, cross product, equations of lines and planes)

Equation of a plane

Consider a plane containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=\langle a, b, c\rangle$. Then point $X=(x, y, z)$ belong to this plane if and only if
$\vec{n} \perp \overrightarrow{P X}$, i.e. $\vec{n} \cdot \overrightarrow{P X}=0 \quad$ vector equation of a plane
(*) $\quad a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ scalar equation of a plane
If we denote $d:=-a x_{0}-b y_{0}-c z_{0}$, then (*) becomes $a x+b y+c z+d=0$ general form of the equation of a plane

Parallel and intersecting planes
Let P_{1} and P_{2} be two planes in \mathbb{R}^{3}. Then the following possibilities exist:

| | | P_{1} and P_{2} share a common point |
| :--- | :--- | :--- | :--- |
| YES | | NO |

Finding the line of intersection for two planes
Find the parametric and symmetric equations for the line formed by the intersection of the planes

$$
x+2 y+3 z=0 \quad, \quad x+y+z=-1
$$

Vector-valued functions
Definition A vector-valued function is a function that takes real numbers as inputs and gives vectors as outputs, ie.,

$$
\begin{aligned}
& \vec{r}(t)= \\
& \vec{r}(t)=
\end{aligned}
$$

Example $\vec{r}(t)=$

$$
\vec{r}(t)=
$$

Remark From now on we will not distinguish between the point (x, y, z) and the vector $\langle x, y, z\rangle$, both are just lists of three real numbers

Vector-valued functions
Vector valued function $\vec{r}(t)$ often represents a

Think about the motion of a planet, flight of an airplane or a bird etc.

A vector-valued function may not be defined for all real numbers. For example, $\vec{r}(t)=$ is not defined for

You can explicitly specify the set of real number for which you want to define the function by writing, e.g.,

- We call this set the

Vector-valued functions
If the domain is not explicitly specified, we assume that it is the set of

Example

$$
\begin{aligned}
\vec{r}(t) & =\left\langle\frac{1}{t} \cdot \frac{1}{\cos t} \cdot t\right\rangle \\
\operatorname{dom}(\vec{r}(t)) & =
\end{aligned}
$$

Sometimes the domain is found from the problem setup. If the function describes the motion of a bird between time O and tim T, then the domain is

Velocity and acceleration Imagine a particle moving (smoothly) through space. Let

The velocity is the It describes the

The acceleration is the
Mathematically, the velocity is the derivative and the accelaration is
The derivatives are computed

Velocity and acceleration
Example Let $\vec{r}(t)=$
The velocity:
The acceleration:
The path of this particle is called a

Limits of vector-valued functions
Let $\vec{r}(t)=\left\langle r_{1}(t), r_{2}(t), r_{3}(t)\right\rangle$ be a vector-valued function and let $\vec{L}=\left\langle L_{1}, L_{2}, L_{3}\right\rangle$. Then the expression
means that

If one or more of the limits $\lim _{t \rightarrow t_{0}} r_{1}(t), \lim _{t \rightarrow t_{0}} r_{2}(t)$ or $\lim _{t \rightarrow t_{0}} r_{3}(t)$ do not exist, we say that $\lim _{t \rightarrow t_{0}} \vec{r}(t)$ does not exist.
Example What is

$$
\lim _{t \rightarrow 0}\left\langle\frac{\sin t}{t}, e^{t}, \cos t\right\rangle
$$

Continuity of vector-valued functions
A vector-valued function $\vec{r}(t)$ is continuous at to if

This is equivalent to $\lim _{t \rightarrow t_{0}} r_{1}(t)=r_{1}\left(t_{0}\right), \lim _{t \rightarrow t_{0}} r_{2}(t)=r_{2}\left(t_{0}\right)$ and

$$
\lim _{t \rightarrow t_{0}} r_{3}(t)=r_{3}\left(t_{0}\right)
$$

Therefore, $\vec{r}(t)$ being continuous at t_{0} is equivalent to

We say that $\vec{r}(t)$ is continuous if it is continuous at every single point to.

Derivatives of vector-valued functions The derivative of a vector-valued function \vec{r} is

$$
\vec{r}^{\prime}(t)=
$$

provided that the limit exists. If $\vec{r}^{\prime}(t)$ exists, we say that \vec{r} is - If \vec{r} is differentiable at every point t from the interval (a, b), we say that \vec{r} is differentiable on (a, b).
Notice that if $\vec{r}(t)=\left\langle r_{1}(t), r_{2}(t), r_{3}(t)\right\rangle$, then

$$
\vec{r}^{\prime}(t)=
$$

$$
=
$$

Calculus of vector-valued functions
Example Let $\vec{r}(t)=\left\langle\sin t, e^{2 t}, t^{2}-4 t+2\right\rangle$
Then
Summary
Calculus concepts (limit, continuity, derivative) are applied to vector-valued functions componentwise (apply to each component separately).

If $\vec{r}(t)$ represents the position of some object, then

- $\vec{r}^{\prime}(t)$ is the velocity of this object $\left(\left\|\vec{r}^{\prime}(t)\right\|\right.$ is speed)
- $\vec{r}^{\prime \prime}(t)$ is the acceleration of the object

Integrals of vector-valued functions
Integration of vector-valued functions is done if $\vec{r}(t)=\left\langle r_{1}(t), r_{2}(t), r_{3}(t)\right\rangle$, then
and if $a<b$

Example $\cdot \int\left\langle\sin t, t^{2}+2 t, e^{2 t}\right\rangle d t=$

$$
=
$$

$$
\text { - } \begin{aligned}
2 & \left(\sin t \cdot \vec{i}+\left(t^{2}+2 t\right) \cdot \vec{j}+e^{2 t} \vec{k}\right) d t
\end{aligned}=
$$

