MATH 285: Stochastic Processes

math-old.ucsd.edu/~ynemish/teaching/285

Today: Periodic, aperiodic, reducible, irreducible Markov chains

- Homework 2 is due on Friday, January 21 11:59 PM

First step analysis
Let $\left(X_{n}\right)$ be a $M C$ with state space S and transition matrix P.
Let ACS \quad hitting/absorption tim
Let $A \subset S, \tau_{A}=\min \left\{n \geq 0: X_{n} \in A\right\}$, and denote
$h^{A}(i):=\mathbb{P}_{i}\left[\tau_{A}<\infty\right]$ (as in lecture 3 with $B=\phi$, so that $\tau_{B}=\infty$) \uparrow hitting/absorption probability
Then (lecture 2) $h^{A}(i)$ satisfies the system of linear equations

$$
\text { (*) } \quad \begin{cases}h^{A}(i)=1 & \text { if } i \in A \\ h^{A}(i)=\sum_{j \in S} p(i, j) h^{A}(j) & \text { if } i \notin A\end{cases}
$$

The solution may be not unique.
Theorem 7.0 The vector of hitting probabilities ($h^{A}(i)$, it S) is the minimal nonnegative solution to $(*)$
(Minimal: if $\left(x(i), i\right.$ es) satisfies $(*)$ and $x(i) \geq 0 \quad \forall i$, then $\left.x(i) \geq h^{A}(i)\right)$

First step analysis
Proof of minimality: Let $(x(i)$, it S) be a nonnegative solution to $(*)$. Then $x(i)=1$ for all it A (so $\left.x(i) \geq h^{A}(i)\right)$ For all $i \notin A$

$$
\begin{aligned}
& x(i)=\sum_{j \in S} p(i, j) x_{j}=\sum_{j \in A} p(i, j)+\sum_{j \notin A} p(i, j) x(j) \\
& =\sum_{j \in A} p(i, j)+\sum_{j \notin A} p(i, j)\left(\sum_{k \in A} p(j, k)+\sum_{k \notin A} p(j, k) x(k)\right) \\
& =\sum_{j \in A} p(i, j)+\sum_{j \notin A} \sum_{k \in A} p(i, j) p(j, k)+\sum_{j \notin A} \sum_{k \in A} p(i, j) p(j, k) x(k) \\
& =\mathbb{P}_{i}\left[X_{1} \in A\right]+\mathbb{P}_{i}\left[X_{1} \notin A, X_{2} \in A\right]+H_{2}^{\geqslant 0}=\cdots= \\
& =\mathbb{P}_{i}\left[X_{1} \in A\right]+\mathbb{P}_{i}\left[X_{1} \notin A, X_{2} \in A\right]+\cdots+\mathbb{P}_{i}\left\{X_{1} \notin A_{1}, \ldots, X_{n-1} \notin A, X_{n} \in A\right]+H_{n}^{1,0} \\
& =\mathbb{P}_{i}\left[\tau_{A}=1\right]+\mathbb{P}_{i}\left[\tau_{A}=2\right]+\mathbb{P}_{i}\left[\tau_{A}=n\right]+H_{n}^{\geqslant 0} \\
& \Rightarrow \forall i \notin A_{\forall n} x(i) \geq \mathbb{P}_{i}\left[\tau_{A} \leqslant n\right] \Rightarrow \forall i \notin A x(i) \geq \lim _{n \rightarrow \infty} \mathbb{P}_{i}\left[\tau_{A} \leq n\right]=h^{A}(i)
\end{aligned}
$$

First step analysis
Denote $g^{A}(i):=\mathbb{E}_{i}\left[\tau_{A}\right]$ (mean hitting/absorption time)
Theorem 7.0' The vector of mean hitting times ($\left.g^{A}(i), i \in S\right)$ is the minimal nonnegative solution to the system of linear equations

$$
\begin{cases}g(i)=1+\sum_{j \in S} p(i, j) g(j) & \text { if } i \notin A \\ g(i)=0 & \text { if } i \in A\end{cases}
$$

Proof: Exercise.

Stationary distribution
Stationary distribution

$$
\pi=\pi P
$$

Q1: Existence of the stationary distribution
Q 2: Uniqueness of the stationary distribution
Q 3: Convergence to the stationary distribution

General Markov chain with finite state space Let $\left(X_{n}\right)$ be a MC with finite state space S.
Suppose that $\pi=P \pi, P=Q D Q^{-1}$ such that

$$
Q=\left[\begin{array}{ll}
1 & \\
1 & * \\
\vdots & * \\
1 &
\end{array}\right] \quad Q^{-1}=\left[\begin{array}{l}
\pi \\
*
\end{array}\right] \quad D=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & M \\
\vdots & M
\end{array}\right], \lim _{n \rightarrow \infty} M^{n}=0(* *)
$$

Then $\lim _{n \rightarrow \infty} P^{n}=\lim _{n \rightarrow \infty} Q D^{n} Q^{-1}=\left[\begin{array}{ll}1 & \\ 1 & * \\ 1 & \end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 \\ \vdots & 0\end{array}\right]\left[\begin{array}{c}\pi \\ 0 \\ *\end{array}\right]=\left[\begin{array}{c}\pi \\ \pi \\ \vdots\end{array}\right]$
Enough to have the following: (use Jordan normal form)

1) 1 is a simple eigenvalue (1 is always an eigenvalue since $(P \mathbb{1})_{i}=\sum_{j} p(i . j)=1$, so $P \mathbb{1}=\mathbb{1}, \mathbb{1}=\left(\begin{array}{l}i \\ \vdots \\ 1\end{array}\right)$ is an e. \vec{v}.)
2) There is a leif eigenvector of 1 with all nonnegative entries
3) If λ is an eigenvalue of P and $\lambda \neq 1$, then $|\lambda|<1$

Perron-Frobenius theorem
Theorem 6.5 Let M be an $N \times N$ matrix all of whose entries are strictly positive. Then there is an eigenvalue $r>0$ such that all other eigenvalues λ satisfiy $|\lambda|<r$
Moreover, r is a simple eigemalue and its one-dimensional eigenspace contains a vector with all strictly positive entries. Finally, r satisfies the bound $\min _{i} \sum_{j} M_{i j} \leq r \leq \max _{i} \sum_{j} M_{i j}$ Proof. Nu proof
Let P be a stochastic matrix with all strictly positive entries. Then $\sum_{j} P_{i j}=1$, therefore 1 is the PF eigenvalue: simple with (left) eigenvector π with all positive entries. If $\left(X_{n}\right)$ is a MC with transition matrix P, then $\lim _{n \rightarrow \infty} \pi_{0} P^{n}=\pi$.

Perron - Frobenius Theorem
Enough if $\exists n_{0}>0$ s.t. all entries of $P^{n_{0}}$ are strictly positive.
Corollary 6.6 Let P be a stochastic matrix s.t. there exists $n_{0} \in \mathbb{N}$ for which $\forall i, j\left[P^{n_{0}}\right]_{i j}>0$
Then there exists a unique stationary distribution $\pi=\pi P$ and $\lim _{n \rightarrow \infty} \nu P^{n}=\pi \quad$ for any distribution ν.
Proof. Use the fact that if $\vec{v} P=\lambda \vec{v}$, then $\vec{v} P^{2}=\lambda \vec{v} P=\lambda^{2} \vec{v}$ so P^{n} has the same eigenvectors as P, and eigenvalues are $n-$ th powers of eigenvalues of P. By PF the, 1 is ev of $P^{n_{0}}$ with $e \vec{v} s \pi$ and $\mathbb{1}$. Therefore 1 is $e \cdot v$. of P with $e \vec{J} \pi$ and $\mathbb{1}$ If λ is ev of P and $\lambda \neq 1$, then $\lambda^{n_{0}}$ is eve of $P^{n_{-}}$. By $P F$ $\left|\lambda^{n}\right|<1$, therefore $|\lambda|<1$. We conclude that P satisfies 1$)^{-3)}$

Stationary distribution and long-ren behavior Prop. 7.1 Let $\left(X_{n}\right)$ be a $M C$ with finite state space S Suppose that there exists $n_{0} \in \mathbb{N}$ s.t $\left[P^{n_{j}}\right]_{i j}>0$ for all $i, j \in S$ Then for each $j, \pi(j)$ is equal to the asymptotic expected fraction of time the chain spends in j, i.e.,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\frac{1}{n+1} \sum_{k=0}^{n} \mathbb{1}_{\left\{x_{k}=j\right\}}\right]=\pi(j)
$$

Proof

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{n+1} \sum_{k=0}^{n} \mathbb{1}_{\left\{x_{k}=j\right\}}\right] & =\frac{1}{n+1} \sum_{k=0}^{n} \mathbb{P}\left[X_{k}=j\right]=\frac{1}{n+1} \sum_{k=0}^{n} \sum_{i \in S} \mathbb{P}\left[X_{k}=j \mid X_{0}=i\right] \mathbb{P}\left[X_{0}\right] \\
& =\frac{1}{n+1} \sum_{k=0}^{n}\left[\pi_{0} P^{k}\right]_{j}
\end{aligned}
$$

By Cor. 6.6, $\left[\pi_{0} P^{k}\right]_{j} \rightarrow \pi(j)$ as $k \rightarrow \infty$, for all $j \in S$ and π_{0}. Therefore, $\frac{1}{n+1} \sum_{k=0}^{n}\left[\pi_{0} P^{n}\right]_{j} \rightarrow \pi(j)$ if $a_{n} \rightarrow a, n \rightarrow \infty$, then $\left.\frac{1}{n} \sum_{k=1}^{n} a_{k} \rightarrow a\right]$

