MATH 285: Stochastic Processes

math-old ucsod edu/~ynemish/teaching/285

Today: Martingales convergence theorem

- Homework 7 is due on Friday, March 11, 11:59 PM

The martingale convergence theorem
Theorem 26.1 Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale, and suppose there exists $c \geq 0$ such that $\mathbb{P}\left[X_{n} \geq-c\right]=1$ for all n.
Then there is a random variable X_{∞} such that

Proof (1) Enough to prove for $C=0$
Consider $Y_{n}=$. Then $\left(Y_{n}\right)$ is a martingale, $Y_{n} \geq 0$. and if and only if

Assume that
(2)

- $\left(X_{n}\right)$ is a nonnegative martingale, therefore by

The martingale convergence theorem

- Doob's Maximal inequality for any $N \in \mathbb{N}$

$$
\mathbb{P}\left[\max _{0 \leq n \leq N} X_{n} \geq a\right] \leqslant
$$

- Take the limit $N \rightarrow \infty$ (monotonicity of \mathbb{P})

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left[\max _{0 \leqslant n \leqslant N} x_{n} \geq a\right]=
$$

- Take the limit $a \rightarrow \infty$

$$
\lim _{a \rightarrow \infty} \mathbb{P}\left[\max _{n \geqslant 0} X_{n} \leqslant a\right]=
$$

(3) Each trajectory $\left(X_{n}(w)\right)$ has a convergent subsequence $\left(X_{n_{k}}(\omega)\right)$, denote the limit $X_{\infty}(\omega)$

The martingale convergence theorem
(4) If $\left(X_{n}(\omega)\right)$ is not convergent, there are infinitely many terms $X_{n}(\omega)$ away from $X_{\infty}(\omega)$

If $\left(X_{n}(\omega)\right)$ is not convergent, there are $A, B \in \mathbb{Q}$, $A, B \geq 0$, $A<B$ such that there are infinitely many terms $X_{n}(\omega) \geq B$ and infinitely many terms $X_{n}(\omega) \leq A$.

The martingale convergence theorem

For any $A, B \in \mathbb{Q}, A, B \geq 0, A<B$ denote

$$
S_{1}=
$$

, $T_{n}=$
$\left(S_{n}, T_{n}\right)$ denotes an (A,B)-upcrossing
(5) If $\left(X_{n}(w)\right)$ is not convergent, then there exist infinitely many (A, B) upcrossings for some $A<B$

The martingale convergence theorem
Fix A, B. Denote
(A, B)-upcrossings before time n.
Denote

- total number of
(A, B) -upcrossings.
(6)
- Consider the following game:
bet $B_{j}=\{$

$$
c\left(x_{0}, \ldots, x_{j-1}\right) \text {-measurable }
$$

Total winnings: $W_{n}=$

The martingale convergence theorem

- $\left(W_{n}\right)_{n \geq 1}$ is a martingale, therefore

$$
w_{1}=\{
$$

- $W_{n}=$

The martingale convergence theorem

- $\mathbb{E}\left[W_{n}\right]=0 \geq(b-a) \mathbb{E}\left[U_{n}\right]-a \Rightarrow$
- $\lim _{n \rightarrow \infty} \mathbb{E}\left[U_{n}\right]=\quad \Rightarrow$
(7) For any $A, B \in \mathbb{Q}, A, B \geq 0, A \subset B$

$$
\mathbb{P}[\text { infinitely many }(A, B) \text {-upcrossings }]=0
$$

(8) $\mathbb{P}[\exists A, B \in \mathbb{Q}, A, B \geq 0, A<B$ s.t. The exists ∞ - many

$$
(A, B)-\text { upcrussings }]=0
$$

Example
$\left(X_{n}\right)_{n \geq 0}$ SSRW on $\mathbb{Z}, X_{0}=. \quad T=$
Consider $M_{n}:=$. Mn is a nonnegative martingale.
Therefore, by the Martingale convergence thm there exists r.v. M_{∞} s.t. $\mathbb{P}\left[\lim _{n \rightarrow \infty} M_{n}=M_{\infty}\right]=1$.
What is M_{∞} ? $M_{n}(\omega)$ is eventually constant for any ω.
Since $\left\{M_{n}(\omega)=k, M_{n+1}(\omega)=k\right\}$ is not possible for any $k \geq 1, M_{\infty}=0$ with probability 1.
Remark $\mathbb{E}\left[M_{n}\right]=\mathbb{E}\left[M_{0}\right]=\mathbb{E}\left[X_{0}\right]=1$, but $\quad M_{\infty}=0$. In particular,

Example. Poya Urns
An urn initially contains a red balls and b blue balls. At each step, draw a ball uniformly at random and return it with another ball of the same color. Denote by X_{n} the number of red balls in the urn after n turns. Then $\left(X_{n}\right)$ is a Markov chain (time inhomogeneous)

$$
\mathbb{P}\left[X_{n+1}=k+1 \mid X_{n}=k\right]=\quad, \mathbb{P}\left[X_{n+1}=k \mid X_{n}=k\right]=
$$

Long-run behavior of the process? Techniques developed for time-homogeneous MC cannot be applied.

Let $M_{n}:=$ be the fraction of red ball after n turns. Then

Example. Poya Urns
Next,

$$
\mathbb{E}\left[X_{n+1} \mid X_{0}, \ldots, X_{n}\right]=
$$

(X_{n} is Markov)
and $\mathbb{E}\left[X_{n+1} \mid X_{n}\right]=$

$$
\mathbb{E}\left[M_{n+1} \mid M_{0}, \ldots, M_{n}\right]=
$$

(M_{n}) is a nonnegative martingale. Therefore, by the Martingale convergence theorem $M_{n} \rightarrow M_{\infty}, n \rightarrow \infty$ ass.
One can show that M_{∞} has beta distribution

$$
f_{M_{\infty}}(x)=\frac{(a+b-1)!}{(a-1)!(b-1)!} x^{a-1}(1-x)^{b-1}, 0<x<1
$$

