MATH 285: Stochastic Processes

math-old ucsod edu/~ynemish/teaching/285

Today: Poisson processes Birth and death chains Recurrence and transience

- Homework 5 is due on Friday, March 4, 11:59 PM

Poisson processes
! The jump chain of a Poisson process has a deterministic trajectory

By Prop.19.2, given the trajectory the sojourn time are independent exponential r.v. with $S_{k} \sim \operatorname{Exp}\left(q\left(Y_{k-1}\right)\right)$

$$
\mathbb{P}\left[S_{1}>s_{1}, \ldots, S_{n}>s_{n}\right]=\sum_{i_{0}, \ldots, \text { in }} \mathbb{P}\left[S_{1}>s_{1}, \ldots, S_{n}>s_{n} \mid Y_{0}=i_{0}, \ldots, y_{n}=i_{n}\right] \mathbb{P}\left[Y_{0}=i_{0}, \ldots, y_{n}=i_{n}\right]
$$

$$
=
$$

$$
=
$$

Prop 20.6 If $\left(X_{t}\right)$ is a Poisson process, then S_{1}, S_{2}, \ldots are

Poisson processes
Alternative construction of a Poisson process (with $X_{0}=0$):

- take a collection of i.i.d. random variables $S_{k}, S_{k} \sim \operatorname{Exp}(\lambda)$
- define the jump times $J_{n}=S_{1}+\cdots+S_{n}, J_{0}=0$
- set $X_{t}=n$ for $J_{n} \leqslant t<J_{n+1}$

Then X_{t} is a Poisson process with rate λ.
You can think about I_{n} as the times of some events, and X_{t} as the number of events that happend up to times.
Theorem 20.7 Let $\left(X_{t}\right)_{t \geq 0}$ be a Poisson process of rate λ, $X_{0}=0$. Then for any $s \geq 0$ the process
is a Poisson process of rate λ, independent of $\left\{X_{u}: 0 \leq u \leq s\right\}$
No proof.

Independent increments
Given a stochastic process $\left(X_{t}\right)_{t 20}$ its increments are random variables

Suppose that $\left(X_{t}\right)$ is a counting process, ie.,
(jump times $=$ event times,
$X_{t}=\#$ of events that occurred up to time t). Then for $s<t$
$X_{t}-X_{s}=\#$ of events that occurred on $(s, t]$.
Cor. 20.8 If $\left(X_{t}\right)$ is a Poisson process with rate λ_{1}, then for any $0 \leq t_{0}<t_{1}<\cdots<t_{n}$ the increments $X_{t_{n}}-X_{t_{n-1}}, \ldots, X_{t_{1}}-X_{t_{0}}$ are independent, and each increment $X_{t}-X_{s}$ is a Poisson random variable with rate characterize the Poisson process.

Independent increments
Proof. - $X_{t}-X_{s}=X_{s+(t-s)}-X_{s} \sim$

- $X_{t_{1}}, X_{t_{0}}, \ldots, X_{t_{n}-} X_{t_{n-1}}$ are independent

Induction: Suppose $X_{t_{1}}, X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$ are independent By Thm 20.7, for any $t \geqslant 0$ the process
is independent of X_{s} for $s \leq t_{n}$
Therefore, \bar{X}_{t} is independent of $X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$, and for any $t_{n+1}>t_{n} \quad \tilde{X}_{t_{n+1}-t_{n}}=X_{t_{n+1}-} X_{t_{n}}$ is independent of $X_{t_{1}}-X_{t_{0}}, \ldots, X_{t_{n}}-X_{t_{n-1}}$

- Independent increments uniquely determine the joint distribution of $\left(X_{t_{0}}, \ldots, X_{t_{n}}\right)$ for any $0 \leq t_{0}<\cdots<t_{n}<\infty$ $\mathbb{P}\left[X_{t_{0}}=i_{0}, \ldots, X_{t_{n}}=i_{n}\right]=$ $=$

Birth and death chains
Consider a continuous-time MC with state space $S=\{0,1,2, \ldots\}$ and transition rates

We call this process the birth and death chain.

- all $\mu_{i}=0$ pure birth process
- all $\lambda_{i}=0$ pure death process
- Poisson process is a pure birth process with $\lambda_{i}=\lambda$

Example: Kingman's walescent
Pure death process with $\mu_{1}=0, \mu_{k}=\binom{k}{2}$
Tracking ancestor lines back in time

Kingman's coalescent

Denote

the time to most recent common ancestor.
Conditioned on $X_{0}=N, T=S_{1}+S_{2}+\cdots+S_{N-1}$, where
$S_{1}=$ time spent at state $N_{1} S_{2}=$ time spent at $N-1, \ldots$

$$
\mathbb{E}[T]=\mathbb{E}\left[S_{1}+S_{2}+\cdots+S_{N-1}\right]=
$$

$$
=
$$

Denote L = sum of the branch lengths. Compute Conditioned on $X_{0}=N, L=$

$$
\mathbb{E}[L]=
$$

Explosion
Let $\left(X_{t}\right)$ be a pure birth process with $\lambda_{i}=i^{2}$.
Condition on $X_{0}=1$. Denote by T_{N} the time to reach N.
Then $T_{N}=S_{1}+S_{2}+\cdots+S_{N-1}$ and

$$
\mathbb{E}\left[T_{N}\right]=
$$

Denote the time to reach infinity. Then , and thus

We call T the explosion time. What happens after T ?
We can set $X_{t}=\infty$ for $t \geq T$ (minimal) or we can restart from another state

Recurrence and transience
Def 21.2 Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous-time $M C$ with state space S, and let $i \in S$. Let $T_{i}=\min \left\{t>0: X_{t}=i\right\}$.
The state i is called transient if $\mathbb{P}_{i}\left[T_{i}<\infty\right]=0$.
recurrent if $\mathbb{P}_{i}\left[T_{i}<\infty\right]=1$
positive recurrent if $\mathbb{E}_{i}\left[T_{i}\right]<\infty$

- i is recurrent (transient) for (X_{t}) iff i is recurrent (transient) for the embedded jump chain $\left(y_{n}\right)$
X_{t} revisits i infinitely many times
if y_{n} revisits i infinitely many times
- Positive recurrence takes into account how long it takes to revisit

Recurrence for birth and death chains
Let $\left(X_{t}\right)_{t \geq 0}$ be a birth and death chain with parameters $\lambda i=q(i, i+1)>0$ for $i \geq 0, \mu_{i}=q(i, i-1)>0$. for $i \geq 1$

$\left(X_{t}\right)$ is irreducible (all $\lambda_{i}>0, \mu_{i}>0$), so it is enough to analyze one state for recurrence/transience (take state 0). Similarly as for the discrete-time MC, denote

$$
h(i):=
$$

Recurrence for birth and death chains
By the Strong Markov property

$$
\begin{equation*}
h(i)= \tag{*}
\end{equation*}
$$

Recall that $p(i, j)=q(i, j) / q(i)$, so ((x) becomes

$$
h(i)=
$$

We can rewrite this using the differences

$$
h(i+1)-h(i)=
$$

Applying the above identities recursively gives

$$
h(i+1)-h(i)=
$$

Recurrence for birth and death chains
After taking the partial sums

$$
h(n)-h(0)=
$$

- if $\sum_{i=0}^{\infty} p_{i}=\infty$, then and $\forall n \geq 1$
$L_{)}\left(X_{t}\right)$ is recurrent
- if $\sum_{i=0}^{\infty} \rho_{i}<\infty$, we need to find the minimal solution (Thm 7-0) which is achieved when $h(0)-h(1)=$

Then $h(1)=1-\frac{1}{\sum_{i=0}^{\infty} p_{i}}<1$ and $\left(X_{t}\right)$ is transient.

