MATH 285: Stochastic Processes

math-old.ucsod.edu/~ynemish/teaching/285

Today: MCMC

- Homework 3 is due on Friday, February 4, 11:59 PM

Example
Consider random walk on $G=$
Transition matrix

$$
P=\left[\begin{array}{ccc}
0 & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right]
$$

P is doubly stochastic, so $\pi=$

Detailed balance equation:

$$
p(j, i)=\quad \Rightarrow
$$

If $\pi=\left(\frac{1}{|s|}, \ldots, \frac{1}{|s|}\right),\left(X_{n}\right)$ is reversible only if

Example: Hard Core Configuration
Hard Core Configuration on $\{1,2, \ldots, N\}^{2}$ is a function such that

Denote by HCCN the set of all hard core configurations
 on $\{1, \ldots N\}^{2}$. Suppose we want to choose a uniform distribution on $H C C N_{N}, \mathbb{P}[Z=c]=\quad \forall c \in H C C_{N}$ Problem: How to compute |HCCN|?

Example: Hard Core Configuration
Computing $\left|H C C_{N}\right|$ for large N is difficult. Instead we construct a MC on $H C C_{N}$ whose stationary distribution is the uniform distribution on HCC_{N}. Construction: for any two configurations $c \neq c^{\prime}$

$$
\begin{aligned}
& p\left(c, c^{\prime}\right)=\left\{\begin{array}{l}
\text { if } c \text { and } c^{\prime} \text { differ at exactly one point } \\
, \text { otherwise }
\end{array}\right. \\
& p(c, c)=
\end{aligned}
$$

Implementation: at each step choose $(i, j) \in\{1, \ldots, N\}^{2}$ uniformly at random and change the value at (i, j) if possible. E.g., $X_{n}=c$, choose (i, j).

- If $c(i, j)=1$, then

Example: Hard Core Configuration

- If $c(i, j)=0$, and $c(i \pm 1, j \pm 1)=0$, then
- If $c(i, j)=0$ and one of $c(i \pm 1, j \pm 1) \neq 0$, then
(i) Then for any $c_{1} c^{\prime} \in H C C_{N} \quad \mathbb{P}\left[X_{n+1}=c^{\prime} \mid X_{n}=c\right]=$
(ii) $\left(X_{n}\right)$ is irreducible $\left(\forall c, c^{\prime} \in H C C_{N}\right.$
(iii) $p\left(c, c^{\prime}\right)=p\left(c^{\prime}, c\right)$ (c and c^{\prime} differ in only one coordinate)
(iv) Uniform distribution on $H C C_{N}$ is the stationary distribution $\pi(c)=1 / 1 H C C / N \Rightarrow$

$$
\Rightarrow
$$

Now if we start the process from any $C \in H C C_{N}$, then for sufficiently large $n \quad \mathbb{P}\left[X_{n}=c\right] \approx$

Example: Graph coloring
Let $G=(V, E)$ be a finite graph. A g-coloring of G (with $g \in \mathbb{N}$) is a function $f: V \rightarrow\{1,2, \ldots, g\}$ s.t.
(different colors of neighboring vertices)
Q: How to choose a q-coloring uniformly at random?

Construct a MC: if f and g are two g-colorings, $f \neq g$, set $p(f, g)=\left\{\begin{array}{l}\text { if } f \text { and } g \text { differ at exactly one vertex } \\ \text { otherwise }\end{array}\right.$

$$
p(f, f)=
$$

$\left(X_{n}\right)$ with transition probabilities $p(f, g)$ is an irreducible MC with stationary distribution $\pi(f)=$

Metropolis -Hastings Algorithm
Q: How to sample any (strictly positive) distribution π ?
Two-step MC: (1) propose moves (2) accept/reject move
Construction of the Markov Chain
Let S be a finite set, $\Pi>0$ a distribution on S.
(1) Construct an irreducible $M C$ on S with symmetric transition probabilities
(2) If π (the desired distribution) is not uniform, construct a new MC with transition probabilities

$$
p(i, j)=
$$

- $\pi(i) p(i, j)=$
so π is stationary for $p(i, j)$

Metropolis -Hastings Algorithm
Suppose we know how to simulate a MC with transition probabilities $q(i, j)$. The we can simulate a MC with transition probabilities $p(i, j)$ using the two-step algorithm:
(i) Propose the move:

If $X_{n}=i$, then
(ii) Accept or reject the move:

Accept the move with probability
We get that $\mathbb{P}\left[X_{n+1}=j \mid X_{n}=i\right]=$
If we now run $\left(X_{n}\right)$ sufficiently long, then
Q: How long should we run $\left(X_{n}\right)$?

Convergence rate
Suppose that $\left(X_{n}\right)$ is irreducible and aperiodic $M C$ on S with $|S|=N$, and suppose that P is symmetric, $P=P^{t}$. Then by the spectral theorem

Perron-Frobenius theorem $\Rightarrow \lim _{n \rightarrow \infty} P^{n}=$
Then $\left\|P^{n}-P^{\infty}\right\|=$. Mixing time: n sit.
E.g. for $\left[\begin{array}{cc}1-\varepsilon & \varepsilon \\ \varepsilon & 1-\varepsilon\end{array}\right]$
for $\quad\left[\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right]$

Example: Using model

- $\Lambda_{N}=$
- Spin configuration:
- Energy: $H(\sigma)=$
- Gibbs measure: $P_{\beta}(6)=$

where $z_{\beta}=$ is the partition function (difficult)
- Take Then
- For $\sigma \neq \sigma^{\prime}$ take $q\left(\sigma, \sigma^{\prime}\right)=\{$
- Run MC $\left(X_{n}\right)$ with $p\left(\sigma, \sigma^{\prime}\right)=$

