MATH 285: Stochastic Processes

math-old.ucsd.edu/~ynemish/teaching/285

Today: Positive and null recurrence

- Homework 2 is due on Friday, January 21 11:59 PM

Birth and death processes (infinite state space)

$$
\begin{aligned}
& S=\{0,1,2,3, \ldots\} \\
& p(i, i+1)=p_{i}, p(i, i-1)=1-p_{i} \\
& p(0,1)=p_{0}, p(0,0)=1-p_{0}
\end{aligned}
$$

$p_{0} \in[0,1], p_{0}=0$ absorbing, $p_{0}=1$ reflecting
Model of population growth: $X_{n}=$ size of the population at time n
$\mathbb{P}_{i}\left[\exists n \geq 0: X_{n}=0\right]$ - extinction probability
$\mathbb{P}_{i}\left[X_{n} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right]$ - probability that population explodes
Denote $h(i):=\mathbb{P}_{i}\left[\exists n \geq 0 \quad X_{n}=0\right]=\mathbb{P}_{i}\left[\tau_{0}<\infty\right], \tau_{0}=\min \left\{n \geq 0: X_{n}=0\right\}$
First step analysis:

Positive and null recurrence
Let $\left(X_{n}\right)$ be a Markov chain, and let i be a recurrent state. Starting from $i_{1}\left(X_{n}\right)$ revisits i infinitely many times, $\mathbb{P}_{i}\left[X_{n}=i\right.$ for infinitely many $\left.n\right]=1$
How often does $\left(X_{n}\right)$ revisit state i ?
(i) After n steps, $\left(X_{n}\right)$ revisits $i \approx \frac{n}{2}$ times, spends half of the time at i
(ii) After n steps, $\left(X_{n}\right)$ revisits $i \approx \sqrt{n}$ times, the fraction of time spent at i tend to 0 as $n \rightarrow \infty, \frac{\sqrt{n}}{n} \rightarrow 0, n \rightarrow \infty$
Def 9.2 Let i be a recurrent state for $M C\left(X_{n}\right)$.
Denote $T_{i}=\min \left\{n \geq 1: x_{n}=i\right\}$. If, then we call i If , the we call i

Positive and null recurrence
Remark If i is recurrent, then $\mathbb{P}_{i}\left[T_{i}\right]<\infty$. But it is still possible that $\mathbb{E}\left[T_{i}\right]=\infty$ or that $\mathbb{E}\left[T_{i}\right]<\infty$.
Example: $y_{1}, Y_{2} \in \mathbb{N}, \mathbb{P}\left[Y_{1}=k\right]=, Y_{2}=, \mathbb{P}\left[Y_{2}=2^{k}\right]=$

$$
\mathbb{P}\left[y_{1}<\infty\right]=\mathbb{P}\left[y_{2}<\infty\right]=1, \mathbb{E}\left[y_{1}\right]=, \mathbb{E}\left[y_{2}\right]=
$$

Prop 9.4 In a finite-state irreducible Markov chain all states are
Proof. Fix state $j \in S$
(1) There exist $N \in \mathbb{N}$ and $q \in(0,1)$ such that for any it S (probability of reaching j from i in the next N steps)
Since $\left(x_{n}\right)$ is irreducible, Take

Positive and null recurrence
(2) For any it $S \mathbb{P}_{i}\left[T_{j}>N\right] \leq$. I follows from (1)
(3) For any $k \in \mathbb{N}, \quad \mathbb{P}_{j}\left[T_{j}>(k+1) N\right] \leqslant$

For any its $\mathbb{P}_{j}\left[T_{j}>(k+1) N \mid T_{j}>k N, X_{k N}=i\right]^{\text {(SIP) }}=$

$$
\mathbb{P}_{j}\left[T_{j}>(k+1) N\right]=
$$

$$
=
$$

$$
=
$$

$$
\leq
$$

Now repeat k times.

Positive and null recurrence
(4) $\mathbb{E}_{j}\left[T_{j}\right]=\sum_{n=1}^{\infty} \mathbb{P}_{j}\left[T_{j} \geq n\right]=$
(5) $\mathbb{P}_{j}\left[T_{j} \geq n\right]$ is

Therefore $\forall n \in\{k N+1, \cdots,(k+1) N\}$

$$
\mathbb{P}_{j}\left[T_{j} \geq n\right] \leq
$$

(6) $\sum_{n=k N+1}^{(k+1) N} \mathbb{P}_{j}\left[T_{j} \geq n\right] \leq$

Finally, $\mathbb{E}_{j}\left[T_{j}\right] \leq$
Conclusion: All states of an irreducible MC with finite state space are positive recurrent.

Positive recurrence and stationary distributions
The 9.6 Let $\left(X_{n}\right)$ be a Markov chain with a state space that is countable (but not necessarily finite).
Suppose there exists a positive recurrent state $i \in S, \mathbb{E}_{i}\left[T_{i}\right]<\infty$. For each state $j \in S$ define

$$
\gamma(i, j)=
$$

(the expected number of visits to j before reaching i). Then the function $\pi: S \rightarrow[0,1]$

$$
\pi(j)=
$$

is a stationary distribution for $\left(X_{n}\right)$.
Proof.

Positive recurrence and stationary distribution Tho 10.2 Let $\left(X_{n}\right)$ be a time homogeneous MC with state space S, and suppose that the chain possesses a stationary distribution π.
(1) If $\left(X_{n}\right)$ is irreducible, then
(2) In general, if $\pi(j)>0$, then j is.

Proof. (1) Fix $j \in S$.

- π is stationary $\Rightarrow \pi=\pi P=\pi P^{n} \Leftrightarrow$
- π is distribution \Rightarrow
- $\left(X_{n}\right)$ is irreducible $\Rightarrow \exists n_{0} \in \mathbb{N}$ s.t.

$$
\Rightarrow \pi(j)=\sum_{i \in S} \pi(i) p_{n_{0}}\left(i_{i}\right) \geq
$$

Positive recurrence and stationary distribution
(2) Suppose that $\pi(j)>0$ and j is not positive recurrent.
(i) $\mathbb{E}_{\pi}\left[\sum_{m=1}^{n} \mathbb{1}_{\left\{x_{m}=j\right\}}\right]=$
$\left(\mathbb{E}_{\pi}\right.$: initial distribution is $\left.\pi, \mathbb{P}_{\pi}\left[X_{0}=i\right]=\pi(i)\right)$
Proof: $\mathbb{E}_{\pi}\left[\sum_{m=1}^{n} \mathbb{1}_{\left\{x_{m}=j\right\}}\right]=$
Denote $V_{n}(j):=\sum_{m=1}^{n} \mathbb{1}_{\left\{x_{m}=j\right\}}, T_{j}^{k}=\min \left\{n \geq 0: V_{n}(j)=k\right\}$-time of k-th visit to j
(ii) $\mathbb{P}_{\pi}\left[\lim _{k \rightarrow \infty} \frac{T_{j}^{k}}{k}=\infty\right]=1$

Proof: If j is transient, then (visiting j only finitely many times).

Positive recurrence and stationary distribution
Suppose that j is null recurrent. Denote

$$
\tau_{j}^{k}:=\quad \text {, so that } T_{j}^{k+1}=T_{j}^{\prime}+\tau_{j}^{\prime}+\tau_{j}^{2}+\cdots+\tau_{j}^{k}
$$

- τ_{j}^{k} are stopping times
- SMP implies that $\left\{\tau_{j}^{1}, \tau_{j}^{2}, \ldots\right\}$ are i.i.d.

- τ_{j}^{k} have the same distribution as

$$
T_{j}=
$$

- j is null recurrent \Rightarrow
- $\frac{T_{j}^{k}}{k}=\frac{T_{j}^{\prime}+\tau_{j}^{\prime}+\cdots+\tau_{j}^{k-1}}{k}=$
- $\mathbb{P}_{\pi}\left[\lim _{k \rightarrow \infty} \frac{T_{j}^{\prime}}{k}=0\right]=1, \mathbb{P}_{\pi}\left[\lim _{k \rightarrow \infty} \frac{\tau_{j}^{\prime}+\cdots+\tau_{j}^{k-1}}{k-1} \cdot \frac{k-1}{k}=\infty\right] \stackrel{\text { SLLN }}{=}$

Positive recurrence and stationary distribution
(iii) $\pi(j)=$

$$
V_{n}(j):=\sum_{m=1}^{n} \mathbb{1}_{\left\{x_{m}=j\right\}}
$$

Fix any $M>0$.

- (ii) $\Rightarrow \exists N$ st.
- $T_{j}^{N} / N \leq M$ is equivalent to $\min \left\{n \geq 0: V_{n}(j)=N\right\} \leq M N$ $V_{M N}(j) \geq N$ implies $T_{j}^{N} \leq M N$, therefore

$$
\begin{aligned}
& \quad \mathbb{P}_{\pi}\left[V_{M N}(j) \geq N\right] \leq \\
& \text { - } \mathbb{E}_{\pi}\left[V_{M N}(j)\right]^{(i)}= \\
& \text { - } \sum_{k=1}^{M N} \mathbb{P}_{\pi}\left[V_{M N}(j) \geq k\right]= \\
& \text { - } M N \pi(j)<2 N \Rightarrow
\end{aligned}
$$

Conclusion: $\pi(j)=0$, contradistion \Rightarrow

