Homework 8

Upload the homework to Gradescope by Wednesday, March 16, 11:59 PM.

1. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion. Let $X_{t}=B_{t}-t B_{1}$ for $0 \leq t \leq 1$. Then $\left(X_{t}\right)_{0 \leq t \leq 1}$ is called a Brownian bridge. Note that $X_{0}=X_{1}=0$.
(a) As shown in lecture, $\left(X_{t}\right)_{t \geq 0}$ is a Gaussian process. For $0 \leq s \leq t \leq 1$, calculate $\mathbb{E}\left[X_{t}\right]$ and $\operatorname{Cov}\left(X_{s}, X_{t}\right)$.
(b) For $0 \leq t \leq 1$, let $Y_{t}=X_{1-t}$. Show that $\left(Y_{t}\right)_{0 \leq t \leq 1}$ is also a Brownian bridge.
(c) Show that, if $\left(X_{t}\right)_{0 \leq t \leq 1}$ is a Brownian bridge and $W_{t}=(t+1) X_{t /(t+1)}$ for all $t \geq 0$, then $\left(W_{t}\right)_{t \geq 0}$ is a standard Brownian motion.
2. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion. For all $t \in \mathbb{R}$, let $Z_{t}=e^{-t} B_{e^{2 t}}$. The process $\left(Z_{t}\right)_{t \in \mathbb{R}}$ is called the Ornstein-Uhlenbeck process.
(a) As shown in class, $\left(Z_{t}\right)_{t \in \mathbb{R}}$ is a Gaussian process. Show that, in fact, Z_{t} is a standard normal random variable for each $t \in \mathbb{R}$.
(b) Calculate $\operatorname{Cov}\left(Z_{s}, Z_{t}\right)$ for any $s, t \in \mathbb{R}$.
(c) Show that the Ornstein-Uhlenbeck process is stationary: the process $\left(Z_{s+t}\right)_{t \in \mathbb{R}}$ has the same marginal distributions as $\left(Z_{t}\right)_{t \in \mathbb{R}}$ for any $s \in \mathbb{R}$.
3. Let $\left(A_{t}\right)_{t \geq 0}$ and $\left(B_{t}\right)_{t \geq 0}$ be independent standard Brownian motions. Let $C_{t}=A_{t}-B_{t}$ for $t \geq 0$.
(a) Show that $\left(C_{t}\right)_{t \geq 0}$ is a Brownian motion, and find its variance parameter.
(b) Show that, with probability $1, A_{t}=B_{t}$ for infinitely many $t \geq 0$.
4. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion. Compute the following probabilities exactly, or to 3 decimal places.
(a) $\mathbb{P}\left(B_{2}>B_{1}\right)$.
(b) $\mathbb{P}\left(B_{3}>B_{2}>B_{1}+2\right)$.
(c) $\mathbb{P}\left(B_{t} \leq 1\right.$ for all $\left.t \leq 4\right)$.
(d) $\mathbb{P}\left(B_{t}<0\right.$ for all $\left.t>20\right)$.
