Math 285: Winter 2022 Homework 6

Due: Friday, March 4, 11:59 PM

Upload the homework to Gradescope by Friday, March 4, 11:59 PM. Late homework will not be accepted.

- **1.** Let $(X_t)_{t\geq 0}$ be a Markov chain, with state space S, transition rates q(i, j) and $q(i) = \sum_{j\neq i} q(i, j) > 0$, and transition kernel $p_t(i, j) = \mathbb{P}_i(X_t = j)$ for $t \geq 0$ and $i, j \in S$.
 - (a) For a state $i \in S$, show that

$$\int_0^\infty p_t(i,i) \, dt = \frac{1}{q(i)} \sum_{n=0}^\infty \tilde{p}_n(i,i)$$

where $\tilde{p}_n(i, j)$ denotes the *n*-step transition matrix for the jump chain; i.e. $\tilde{p}_n(i, j) = \mathbb{P}_i(X_{J_n} = j)$.

(b) Conclude that, for any state $i \in S$,

i is recurrent if
$$\int_0^\infty p_t(i,i) dt = \infty$$
,
i is transient if $\int_0^\infty p_t(i,i) dt < \infty$.

- **2.** Let $(X_t)_{t\geq 0}$ be a Markov chain with state space S, and transition kernel $p_t(i, j)$ for $t \geq 0$ and $i, j \in S$. For given states $i, j \in S$, show that if there exists some time t > 0 so that $p_t(i, j) > 0$, then in fact $p_t(i, j) > 0$ for all t > 0. (I.e. there is never periodicity for continuous-time Markov chains.)
- 3. Consider a queueing system in which customers arrive according to a Poisson process of rate λ , are served independently with $\text{Exp}(\mu)$ service times, and there are $k \geq 1$ servers (so up to k customers can be served at a given time). This model is called an M/M/k queue.
 - (a) Model this process as a birth and death chain.
 - (b) Show that the chain is recurrent if and only if $\lambda \leq k\mu$.
 - (c) Show that the chain is positive recurrent if and only if $\lambda < k\mu$.
- 4. Consider a modification of the M/M/1 queue in which, when there are *n* customers already in the queue, a new potential customer decides to join the queue with probability $r_n \in (0, 1)$, and goes away with probability $1 r_n$. This queue can be modeled by a birth and death chain in which $\lambda_n = r_n \lambda$ for some $\lambda > 0$ and $\mu_n = \mu$ for all $n \ge 1$. Show that, if $\lim_{n\to\infty} r_n = 0$, this chain is positive recurrent for any $\mu, \lambda > 0$.