Math 285: Winter 2022

Homework 5

Due: Sunday, February 20, 11:59 PM
Upload the homework to Gradescope by Sunday, February 20, 11:59 PM. Late homework will not be accepted.

1. Consider the following Hidden Markov Model. Let $\left(Y_{n}\right)_{n \geq 0}$ be a Markov chain with state space $S=\{1,2\}$ and transition probabilities $p(1,1)=p(2,2)=0.8$ and $p(1,2)=$ $p(2,1)=0.2$. We think of these states as representing two coins, where coin 1 is fair (with probability 0.5 of coming up heads H or tails T), and coin 2 is biased with probability 0.7 of H and 0.3 of T. We perform 5 coin tosses, and for $k=0,1,2,3,4$ we use coin i for our $(k+1)$ st toss if $Y_{k}=i$. Assume $Y_{0}=1$, so the fair coin is tossed first.
(a) Using the forward algorithm, compute the probability that the fair coin is tossed all 5 times, given that the results are THHHT.
(b) Use the Viterbi algorithm to predict the most likely sequence of coins tossed, given that the results are THHHT.
2. Let U_{n} and V_{n} be i.i.d. sequences of uniform random variables, independent of each other. Let R and S be countable sets, and let $F: S \times[0,1] \rightarrow R$ and $G: S \times[0,1] \rightarrow S$ be functions. Let Y_{0} be a random variable, and inductively define

$$
\begin{aligned}
X_{n} & =F\left(Y_{n}, V_{n}\right) \\
Y_{n+1} & =G\left(Y_{n}, U_{n}\right) .
\end{aligned}
$$

Show that $\left(X_{n}, Y_{n}\right)_{n \geq 0}$ is a Hidden Markov Model, and compute the emission probabilities. Further, show that every Hidden Markov model can be constructed in this manner.
3. (Lawler, Exercise 3.3) Suppose X_{t} and Y_{t} are independent Poisson processes with parameters λ_{1} and λ_{2}, respectively, measuring the number of calls arriving at two different phones. Let $Z_{t}=X_{t}+Y_{t}$.
(a) Show that Z_{t} is a Poisson process. What is the rate parameter for Z ?
(b) What is the probability that the first call comes on the first phone?
(c) Let T denote the first time that at least one call has come from each of the phones. Find the density and distribution function of the random variable T.
4. Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous-time Markov chain with state space $S=\{1,2, \ldots\}$ and transition rates $q(i, i+1)=i$ for all $i \in S$, and $q(i, j)=0$ for $j \neq i+1$. (This process, called a Yule process, models the size of a population in which there are no deaths, and each individual independently reproduces with birth rate 1.)
(a) Let $T=\min \left\{t: X_{t}=4\right\}$. Calculate $\mathbb{E}_{1}[T]$.
(b) Verify that, for each $t>0$, the random variable X_{t} has a geometric distribution with parameter e^{-t}. That is, show that for all positive integers n,

$$
\mathbb{P}_{1}\left(X_{t}=n\right)=e^{-t}\left(1-e^{-t}\right)^{n-1}
$$

