MATH180C: Introduction to Stochastic Processes II

Lecture A00: math.ucsd.edu/~ynemish/teaching/180cA
Lecture B00: math.ucsd edu/~ynemish/teaching/180cB

Today: Brownian motion

Next:

Week 10:

CAPES

- homework 8 (due Friday, June 3)
- HW7 regrades are active on Gradescope until June 4, 11 PM
- homework 9 and solutions are available on the course website OH M: G-7PM, T:5-7PM APM 5829

Reflected BM
Def. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard $B M$. The stochastic process $R_{t}=\left|B_{t}\right|= \begin{cases}B_{t}, & \text { if } B_{t} \geq 0 \\ -B_{t}, & \text { if } B_{t}<0\end{cases}$ is called reflected $B M$.
Think of a movement in the vicinity of a boundary.
Moments: $E\left(R_{t}\right)=\int_{-\infty}^{+\infty}|x| \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x=2 \cdot \int_{0}^{\infty} x \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} d x=\sqrt{\frac{2 t}{\pi}}$

$$
\operatorname{Var}\left(R_{t}\right)=E\left(B_{t}^{2}\right)-\left(E\left(\left|B_{t}\right| \mid\right)^{2}=t-\frac{2 t}{\pi}=t\left(1-\frac{2}{\pi}\right)\right.
$$

Transition density: $P\left(R_{t} \leqslant y \mid R_{0}=x\right)=P\left(-y \leq B_{t} \leqslant y \mid B_{0}=x\right)$

$$
=\int_{-y}^{y} \frac{1}{\sqrt{2 \pi t}} e^{\frac{-(x-s)^{2}}{2 t}} d s \Rightarrow p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}}\left(e^{-\frac{(x-y)^{2}}{2 t}}+e^{-\frac{(x, y)^{2}}{2 t}}\right)
$$

Thy (Lévy) Let $M_{t}=\max _{0 \leq u \leqslant t} B_{u}$. Then $\left(M_{t}-B_{t}\right)_{t \geq 0}$ is a reflected BM.

Reflected BM

Brownian bridge
Brownian bridge is constructed from a $B M$ by conditioning on the event $\{B(0)=0, B(1)=0\}$.

Thy 1. Brownian bridge is a continuous Gaussian process on [0,1] with mean O and covariance function

$$
\Gamma(s, t)=\min \{s, t\}-s t
$$

Brownian motion with drift
Def Let $\left(B_{t}\right)_{t \geq 0}$ be a standard $B M$. Then for $\mu \in \mathbb{R}$ and $\sigma>0$ the process $\left(X_{t}\right)_{t \geq 0}$ with $X_{t}=\mu t+6 B_{t}, t \geq 0$ is called the Brownian motion with drift μ and variance parameter σ^{2}.
Remark BM with drift μ and variance paremeter σ^{2} is a stochastic process $\left(X_{t}\right)_{t \geq 0}$ satisfying

1) $X_{0}=0,\left(X_{t}\right)_{t \geqslant 0}$ has continuous sample paths
2) $\left(X_{t}\right)_{t \geq 0}$ has independent increments
3) For $t>s \quad X_{t}-X_{s} \sim \mathcal{N}\left(\mu(t-s), \sigma^{2}(t-s)\right)$

In particular, $X_{t} \sim N\left(\mu t, \sigma^{2} t\right) \Rightarrow X_{t}$ is not centered. not symmetric w.r.t. the origin

Brownian motion with drift

$$
\begin{aligned}
& \mu=-0.5 \\
& \sigma^{2}=4
\end{aligned}
$$

Gambler's ruin problem for BM with drift
Let $\left(X_{t}\right)_{t \geq 0}$ be a $B M$ with drift $\mu \in \mathbb{R}$ and variance parameter $\sigma^{2}>0$. Fix $a<x<b$ and denote

$$
\begin{aligned}
& T=T_{a b}=\min \left\{t \geq 0: X_{t}=a \text { or } X_{t}=b\right\}, \text { and } \\
& u(x)=P\left(X_{T}=b \mid X_{0}=x\right) .
\end{aligned}
$$

Theorem.
(i) $u(x)=\frac{\exp \left(-\frac{2 \mu}{\sigma^{2}} x\right)-\exp \left(-\frac{2 \mu}{\sigma^{2}} a\right)}{\exp \left(-\frac{2 \mu}{\sigma^{2}} b\right)-\exp \left(-\frac{2 \mu}{\sigma^{2}} a\right)}$
(ii) $E\left(T_{a b} \mid X_{0}=x\right)=\frac{1}{\mu}(u(x)(b-a)-(x-a))$

No proof

$$
\binom{u(x)=\frac{b-x}{b-a}}{\tau S B M}
$$

Example
Fluctuations of the price of a certain share is modeled by the BM with drift $\mu=1 / 10$ and variance $\sigma^{2}=4$. You buy a share at $100 \$$ and plan to sell it if its price increases to $110 \$$ or drops to $95 \$$.
(a) What is the probability that you will sell at profit?
(b) What is the expected time until you sell the share?

Denote by $\left(X_{t}\right)_{t \geq 0}$ a BM with drift $\frac{1}{10}$ and variance 4 , $x=100, b=110, a=95$. Then $2 \mu / 6^{2}=\frac{2 \cdot 0.1}{4}=\frac{1}{20}$ and
(a) $P\left(X_{T}=110 \mid X_{0}=100\right)=\frac{e^{-\frac{1}{20} \cdot 100}-e^{-\frac{1}{20} \cdot 95}}{e^{-\frac{1}{20} \cdot 110}-e^{-\frac{1}{20} \cdot 95}} \approx 0.419$
(b) $E\left(T \mid X_{0}=100\right) \approx \frac{1}{0.1}(0.419(110-95)-(100-95)) \approx 12.88$

Maximum of a BM with negative drift
Thm Let $\left(X_{t}\right)_{t 20}$ be a BM with drift $\mu<0$, variance σ^{2} and $X_{0}=0$. Denote $M=\max _{t \geq 0} X_{t}$. Then

$$
M \sim \operatorname{Ex\rho }\left(-2 \mu / \sigma^{2}\right)
$$

Proof. $X_{0}=0$, therefore $M \geq 0$. For any $b>0$

$$
\begin{aligned}
P(M>b) & =P\left(\bigcup_{n \geqslant 1}\{X \text { hits } b \text { before }-n\}\right) \\
& =\lim _{n \rightarrow \infty} P(X \text { hits } b \text { before }-n) \\
& =\lim _{n \rightarrow \infty} \frac{1-e^{2 n \mu / \sigma^{2}}}{e^{-2 b \mu / \sigma^{2}}-e^{2 n \mu / \sigma^{2}}}=\frac{1}{e^{-2 b \mu / \sigma^{2}}}=e^{-2 b \mu / s^{2}} \\
P(M>b) & =e^{-\left(-2 \mu / \sigma^{2}\right) b} \Rightarrow M \sim \operatorname{Exp}\left(-2 \mu / \sigma^{2}\right)
\end{aligned}
$$

Geometric BM
Def. Stochastic process $\left(Z_{t}\right)_{t \geq 0}$ is called a geometric
Brownian motion with drift parameter α and variance σ^{2} if $\quad X_{t}=\log Z_{t}$ is a BM with drift $\mu=\alpha-\frac{1}{2} \sigma^{2}$ and variance σ^{2}.
In other words, $Z_{t}=z \cdot e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right) t+6 B_{t}}$, where $\left(B_{t}\right)_{t \geq 0}$ is a standard $B M$ and $z>0$ is the starting point $Z_{0}=z$.
If $0 \leqslant t_{1}<t_{2}<\cdots<t_{n}$, then $\frac{Z_{t_{i}}}{Z_{t_{i-1}}}=e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right)\left(t_{i}-t_{i-1}\right)+\sigma\left(B_{t_{i}-B_{t i-1}}\right)}$
Since B has independent increments

$$
\begin{aligned}
& \quad \frac{z_{t_{1}}}{z_{t_{0}}} \cdot \frac{z_{t_{2}}}{z_{t_{1}}}, \ldots, \frac{z_{t_{n}}}{z_{t_{n-1}}} \text { are independent and } \\
& \frac{Z_{t_{n}}}{z_{t_{0}}}=\frac{z_{t_{1}}}{z_{t_{0}}} \cdot \frac{z_{t_{2}}}{z_{t_{1}}}, \ldots, \frac{z_{t_{n}}}{z_{t_{n-1}}} \leftarrow \text { relative change of price }= \\
& \text { product of indepentent relative changes" }
\end{aligned}
$$

Expectation of Geometric BM
Let $\left(Z_{t}\right)_{t z 0}$ be geometric $B M$ with paremeters α and 6 .

$$
\begin{aligned}
& \text { Then } \\
& E\left(Z_{t} \mid Z_{0}=z\right)=E\left(z e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}\right)=z e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right) t} E\left(e^{\sigma B_{t}}\right) \\
& \quad E\left(e^{6 B_{t}}\right)=e^{\frac{t \sigma^{2}}{2}} \\
& \Rightarrow E\left(Z_{t} \mid Z_{0}=z\right)=z e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right) t} e^{t \frac{\sigma^{2}}{2}}=z e^{\alpha t}
\end{aligned}
$$

Remark
It can be shown that for $0<\alpha<\frac{1}{2} \sigma^{2} \quad Z_{t} \rightarrow 0$ as $t \rightarrow \infty$ At the same time, for $\alpha>0 E\left(Z_{t}\right) \rightarrow \infty$.

Variance of geometric BM

$$
\begin{aligned}
& E\left(Z_{t}^{2} \mid Z_{0}=z\right)=E\left(z^{2} e^{2 x_{t}}\right)=E\left(z^{2} e^{\left(2 \alpha-\sigma^{2}\right) t} e^{2 \sigma B_{t}}\right) \\
& \quad=z^{2} e^{\left(2 \alpha-\sigma^{2}\right) t} e^{2 \sigma^{2} t}=z^{2} e^{2 \alpha t+\sigma^{2} t} \\
& \operatorname{Var}\left(Z_{t} \mid Z_{0}=z\right)=z^{2} e^{2 \alpha t+\sigma^{2} t}-z^{2} e^{2 \alpha t}=z^{2} e^{2 \alpha t}\left(e^{\sigma^{2} t}-1\right)
\end{aligned}
$$

Theorem.
Let $\left(Z_{t}\right)_{t \geq 0}$ be geometric BM with parameters α and σ^{2}.
Then
(i) $E\left(z_{t} \mid z_{0}=z\right)=z e^{\alpha t}$
(ii) $\operatorname{Var}\left(z_{t} \mid Z_{0}=z\right)=z^{2} e^{2 \alpha t}\left(e^{6^{2} t}-1\right)$

Gambler's ruin for geometric BM
Let $\left(Z_{t}\right)_{t \geq 0}$ be geometric $B M$ with paremeters α and σ^{2}.
Let $A<K<B$, and denote $T=\min \left\{t: \frac{z_{t}}{z_{0}}=A\right.$ or $\left.\frac{z_{t}}{z_{0}}=B\right\}$.
Theorem

$$
P\left(\frac{Z_{T}}{Z_{0}}=B\right)=\frac{1-A^{1-\frac{2 d}{\sigma^{2}}}}{B^{1-\frac{21}{\sigma^{2}}}-A^{1-\frac{2 L}{\sigma^{2}}}}
$$

Example Fluctuations of the price are modeled by a geometric BM with drift $\alpha=0.1$ and variance $\sigma^{2}=4$. You buy a share at $100 \$$ and plan to sell it if its price increases to $110 \$$ or drops to $95 \$$.
Take $A=0.95, B=1.1,2 \alpha / \sigma^{2}=\frac{1}{20,-1},-2 \alpha / \sigma^{2}=\frac{19}{20}=0.95$

$$
P\left(X_{T}=110 \mid X_{0}=100\right)=\frac{1-0.95^{0.95^{1}}}{1.1^{0.95}-0.95^{0.95}} \approx 0.334
$$

