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1. (40 points) Let Y ∼ Exp(λ) for some λ > 0 and let X ∼ Exp( 1
Y ).

(a) Compute E(X).

(b) Show that if T is a random variable having exponential distribution with rate µ (i.e., if
T ∼ Exp(µ)), then

E(T 2) =
2

µ2
.

(c) Use part (b) to compute E(X2).

(d) Compute the variance Var(X) of the random variable X.

Solution.

(a) Condition of the value of Y and use E(X |Y = y) = y

E(X) =

∫ ∞
0

E(X |Y = y)λe−λydy =

∫ ∞
0

yλe−λydy =
1

λ
. (1)

(b) If T ∼ Exp(µ) then integration by part gives

E(T 2) =

∫ ∞
0

x2µe−µxdx = −x2e−µx
∣∣∣∞
0

+

∫ ∞
0

2xe−µxdx =
2

µ2
. (2)

(c) Now compute E(X2) using E(X2 |Y = y) = 2y2 (follows from (b) with µ = 1/y)

E(X2) =

∫ ∞
0

2y2λe−λydy =
4

λ2
. (3)

(d) We can now compute the variance

Var(X) =
4

λ2
− 1

λ2
=

3

λ2
. (4)
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2. (30 points) The time intervals between two consecutive rainstorms in San Diego are indepen-
dent identically distributed random variables with density (in years)

f(x) =

{
2(1− x), x ∈ (0, 1)
0, otherwise.

(5)

(a) Compute the long run expected time between the last rainstorm and the next rainstorm.

(b) What is the long run probability that there will be no rainstorms in San Diego in the next
6 months?

Solution.

(a) If δ(t) is the current life (age) of the renewal process at time t (time from the last rainstorm
to time t), and γ(t) is the residual life of the renewal process at time t (time until the next
rainstorm after time t), then we have to compute

lim
t→∞

E(δ(t) + γ(t)) = lim
t→∞

E(β(t)). (6)

Lecture 19, page 3:

lim
t→∞

E(β(t)) =
σ2 + µ2

µ
, (7)

where µ and σ2 are the mean and variance of the interrenewal times.

µ =

∫ 1

0
2x(1− x)dx = (x2 − 2x3

3
)
∣∣∣1
0

=
1

3
, (8)

µ2 + σ2 =

∫ 1

0
2x2(1− x)dx =

(2x3

3
− x4

2

)∣∣∣1
0

=
1

6
, (9)

therefore

lim
t→∞

E(β(t)) =
1

2
. (10)

(b) In terms of the renewal process, the long run probability that there will be no rainstorm
in the next 6 months is given by

lim
t→∞

P (γ(t) > 0.5). (11)

Lecture 17, page 4:

lim
t→∞

P (γ(t) > 0.5) =

∫ ∞
0.5

1

µ
(1− F (x))dx, (12)

where F (x) is the interrenewal distribution. Note, that F (x) = 1 for x ≥ 1. For x ∈ (0, 1)

F (x) =

∫ x

0
2(1− s)ds = −(1− s)2

∣∣∣x
0

= 1− (1− x)2. (13)

Therefore,

lim
t→∞

P (γ(t) > 0.5) =

∫ 1

0.5
3(1− x)2dx = −(1− x)3

∣∣∣1
0.5

=
1

8
. (14)
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3. (30 points) Suppose that certain company is using age replacement policy for replacing light-
bulbs in its offices: a lightbulb is replaced either upon its failure, or after reaching age T > 0,
whichever comes first. Suppose that each bulb replacement costs 2 dollars, but if it happens
due to a failure, then it incurs additional costs of 3 dollars per replacement. It is given that
the lifetime of a lightbulb has a uniform distribution on the interval [0,3].

Determine the optimal replacement age T (that minimizes the long run mean cost of the
replacement) and compute the long run mean replacement cost per unit of time for this choice
of T . Compare it to the costs of replacement upon failure.

Solution. Use age replacement strategy from Lecture 17. If the cost of one replacement is K
dollars, each replacement due to a failure costs additional c dollars, T is the replacement age
and the interrenewal distribution is given by F , then the long run replacement cost (per unit)
is given by

C(T ) =
K + cF (T )∫ T

0 (1− F (x))dx
. (15)

In our particular case, K = 2, c = 3 and

F (t) =


0, t ≤ 0,
t/3, 0 < t ≤ 3,
1, t > 3,

(16)

so ∫ T

0
(1− F (x))dx = T − T 2

6
(17)

for 0 ≤ T ≤ 3. Therefore,

C(T ) =
2 + T

T − T 2/6
. (18)

Find the minimum

C ′(T ) =
T − T 2/6− (2 + T )(1− T/3)

(T − T 2/6)2
=
T 2/6 + 2T/3− 2

(T − T 2/6)2
= 0. (19)

Multiplying the numerator by 6, we get that the equation

T 2 + 4T − 12 = 0, (20)

has two solutions, T = −6 and T = 2. Point T = 2 is the point of minimum, therefore, the
optimal long run replacement cost per unit of time is equal to

C(2) =
2 + 2

2− 4/6
= 3. (21)

The cost of replacement upon failure is K + c = 2 + 3 = 5 > 3.

The failure rate per unit of time is 2/3 (since the expected length of the interrenewal time
is 3/2). Therefore, the long-run replacement cost per unit of time without using the age
replacement policy is 5 · 23 = 10/3 > 3.

Therefore, the age replacement policy with the replacement age T = 2 will save the company
10/3− 3 = 1/3 dollars per unit of time in the long run.
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